Unit imzdeflate; { Orginal: deflate.h -- internal compression state deflate.c -- compress data using the deflation algorithm Copyright (C) 1995-1996 Jean-loup Gailly. Pascal tranlastion Copyright (C) 1998 by Jacques Nomssi Nzali For conditions of distribution and use, see copyright notice in readme.txt } { ALGORITHM The "deflation" process depends on being able to identify portions of the input text which are identical to earlier input (within a sliding window trailing behind the input currently being processed). The most straightforward technique turns out to be the fastest for most input files: try all possible matches and select the longest. The key feature of this algorithm is that insertions into the string dictionary are very simple and thus fast, and deletions are avoided completely. Insertions are performed at each input character, whereas string matches are performed only when the previous match ends. So it is preferable to spend more time in matches to allow very fast string insertions and avoid deletions. The matching algorithm for small strings is inspired from that of Rabin & Karp. A brute force approach is used to find longer strings when a small match has been found. A similar algorithm is used in comic (by Jan-Mark Wams) and freeze (by Leonid Broukhis). A previous version of this file used a more sophisticated algorithm (by Fiala and Greene) which is guaranteed to run in linear amortized time, but has a larger average cost, uses more memory and is patented. However the F&G algorithm may be faster for some highly redundant files if the parameter max_chain_length (described below) is too large. ACKNOWLEDGEMENTS The idea of lazy evaluation of matches is due to Jan-Mark Wams, and I found it in 'freeze' written by Leonid Broukhis. Thanks to many people for bug reports and testing. REFERENCES Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc A description of the Rabin and Karp algorithm is given in the book "Algorithms" by R. Sedgewick, Addison-Wesley, p252. Fiala,E.R., and Greene,D.H. Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595} interface {$I imzconf.inc} uses imzutil, impaszlib; function deflateInit_(strm : z_streamp; level : int; const version : AnsiString; stream_size : int) : int; function deflateInit (var strm : z_stream; level : int) : int; { Initializes the internal stream state for compression. The fields zalloc, zfree and opaque must be initialized before by the caller. If zalloc and zfree are set to Z_NULL, deflateInit updates them to use default allocation functions. The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9: 1 gives best speed, 9 gives best compression, 0 gives no compression at all (the input data is simply copied a block at a time). Z_DEFAULT_COMPRESSION requests a default compromise between speed and compression (currently equivalent to level 6). deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if level is not a valid compression level, Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible with the version assumed by the caller (ZLIB_VERSION). msg is set to null if there is no error message. deflateInit does not perform any compression: this will be done by deflate(). } {EXPORT} function deflate (var strm : z_stream; flush : int) : int; { Performs one or both of the following actions: - Compress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in and avail_in are updated and processing will resume at this point for the next call of deflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. This action is forced if the parameter flush is non zero. Forcing flush frequently degrades the compression ratio, so this parameter should be set only when necessary (in interactive applications). Some output may be provided even if flush is not set. Before the call of deflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating avail_in or avail_out accordingly; avail_out should never be zero before the call. The application can consume the compressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of deflate(). If deflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. If the parameter flush is set to Z_PARTIAL_FLUSH, the current compression block is terminated and flushed to the output buffer so that the decompressor can get all input data available so far. For method 9, a future variant on method 8, the current block will be flushed but not terminated. Z_SYNC_FLUSH has the same effect as partial flush except that the compressed output is byte aligned (the compressor can clear its internal bit buffer) and the current block is always terminated; this can be useful if the compressor has to be restarted from scratch after an interruption (in which case the internal state of the compressor may be lost). If flush is set to Z_FULL_FLUSH, the compression block is terminated, a special marker is output and the compression dictionary is discarded; this is useful to allow the decompressor to synchronize if one compressed block has been damaged (see inflateSync below). Flushing degrades compression and so should be used only when necessary. Using Z_FULL_FLUSH too often can seriously degrade the compression. If deflate returns with avail_out == 0, this function must be called again with the same value of the flush parameter and more output space (updated avail_out), until the flush is complete (deflate returns with non-zero avail_out). If the parameter flush is set to Z_FINISH, all pending input is processed, all pending output is flushed and deflate returns with Z_STREAM_END if there was enough output space; if deflate returns with Z_OK, this function must be called again with Z_FINISH and more output space (updated avail_out) but no more input data, until it returns with Z_STREAM_END or an error. After deflate has returned Z_STREAM_END, the only possible operations on the stream are deflateReset or deflateEnd. Z_FINISH can be used immediately after deflateInit if all the compression is to be done in a single step. In this case, avail_out must be at least 0.1% larger than avail_in plus 12 bytes. If deflate does not return Z_STREAM_END, then it must be called again as described above. deflate() may update data_type if it can make a good guess about the input data type (Z_ASCII or Z_BINARY). In doubt, the data is considered binary. This field is only for information purposes and does not affect the compression algorithm in any manner. deflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if all input has been consumed and all output has been produced (only when flush is set to Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example if next_in or next_out was NULL), Z_BUF_ERROR if no progress is possible. } function deflateEnd (var strm : z_stream) : int; { All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent, Z_DATA_ERROR if the stream was freed prematurely (some input or output was discarded). In the error case, msg may be set but then points to a static string (which must not be deallocated). } { Advanced functions } { The following functions are needed only in some special applications. } {EXPORT} function deflateInit2 (var strm : z_stream; level : int; method : int; windowBits : int; memLevel : int; strategy : int) : int; { This is another version of deflateInit with more compression options. The fields next_in, zalloc, zfree and opaque must be initialized before by the caller. The method parameter is the compression method. It must be Z_DEFLATED in this version of the library. (Method 9 will allow a 64K history buffer and partial block flushes.) The windowBits parameter is the base two logarithm of the window size (the size of the history buffer). It should be in the range 8..15 for this version of the library (the value 16 will be allowed for method 9). Larger values of this parameter result in better compression at the expense of memory usage. The default value is 15 if deflateInit is used instead. The memLevel parameter specifies how much memory should be allocated for the internal compression state. memLevel=1 uses minimum memory but is slow and reduces compression ratio; memLevel=9 uses maximum memory for optimal speed. The default value is 8. See zconf.h for total memory usage as a function of windowBits and memLevel. The strategy parameter is used to tune the compression algorithm. Use the value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a filter (or predictor), or Z_HUFFMAN_ONLY to force Huffman encoding only (no string match). Filtered data consists mostly of small values with a somewhat random distribution. In this case, the compression algorithm is tuned to compress them better. The effect of Z_FILTERED is to force more Huffman coding and less string matching; it is somewhat intermediate between Z_DEFAULT and Z_HUFFMAN_ONLY. The strategy parameter only affects the compression ratio but not the correctness of the compressed output even if it is not set appropriately. If next_in is not null, the library will use this buffer to hold also some history information; the buffer must either hold the entire input data, or have at least 1<<(windowBits+1) bytes and be writable. If next_in is null, the library will allocate its own history buffer (and leave next_in null). next_out need not be provided here but must be provided by the application for the next call of deflate(). If the history buffer is provided by the application, next_in must must never be changed by the application since the compressor maintains information inside this buffer from call to call; the application must provide more input only by increasing avail_in. next_in is always reset by the library in this case. deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if a parameter is invalid (such as an invalid method). msg is set to null if there is no error message. deflateInit2 does not perform any compression: this will be done by deflate(). } {EXPORT} function deflateSetDictionary (var strm : z_stream; dictionary : pBytef; {const bytes} dictLength : uint) : int; { Initializes the compression dictionary (history buffer) from the given byte sequence without producing any compressed output. This function must be called immediately after deflateInit or deflateInit2, before any call of deflate. The compressor and decompressor must use exactly the same dictionary (see inflateSetDictionary). The dictionary should consist of strings (byte sequences) that are likely to be encountered later in the data to be compressed, with the most commonly used strings preferably put towards the end of the dictionary. Using a dictionary is most useful when the data to be compressed is short and can be predicted with good accuracy; the data can then be compressed better than with the default empty dictionary. In this version of the library, only the last 32K bytes of the dictionary are used. Upon return of this function, strm->adler is set to the Adler32 value of the dictionary; the decompressor may later use this value to determine which dictionary has been used by the compressor. (The Adler32 value applies to the whole dictionary even if only a subset of the dictionary is actually used by the compressor.) deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a parameter is invalid (such as NULL dictionary) or the stream state is inconsistent (for example if deflate has already been called for this stream). deflateSetDictionary does not perform any compression: this will be done by deflate(). } {EXPORT} function deflateCopy (dest : z_streamp; source : z_streamp) : int; { Sets the destination stream as a complete copy of the source stream. If the source stream is using an application-supplied history buffer, a new buffer is allocated for the destination stream. The compressed output buffer is always application-supplied. It's the responsibility of the application to provide the correct values of next_out and avail_out for the next call of deflate. This function can be useful when several compression strategies will be tried, for example when there are several ways of pre-processing the input data with a filter. The streams that will be discarded should then be freed by calling deflateEnd. Note that deflateCopy duplicates the internal compression state which can be quite large, so this strategy is slow and can consume lots of memory. deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being NULL). msg is left unchanged in both source and destination. } {EXPORT} function deflateReset (var strm : z_stream) : int; { This function is equivalent to deflateEnd followed by deflateInit, but does not free and reallocate all the internal compression state. The stream will keep the same compression level and any other attributes that may have been set by deflateInit2. deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being NIL). } {EXPORT} function deflateParams (var strm : z_stream; level : int; strategy : int) : int; { Dynamically update the compression level and compression strategy. This can be used to switch between compression and straight copy of the input data, or to switch to a different kind of input data requiring a different strategy. If the compression level is changed, the input available so far is compressed with the old level (and may be flushed); the new level will take effect only at the next call of deflate(). Before the call of deflateParams, the stream state must be set as for a call of deflate(), since the currently available input may have to be compressed and flushed. In particular, strm->avail_out must be non-zero. deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR if strm->avail_out was zero. } const deflate_copyright : string = ' deflate 1.1.2 Copyright 1995-1998 Jean-loup Gailly '; { If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. } implementation uses imtrees, imadler; { =========================================================================== Function prototypes. } type block_state = ( need_more, { block not completed, need more input or more output } block_done, { block flush performed } finish_started, { finish started, need only more output at next deflate } finish_done); { finish done, accept no more input or output } { Compression function. Returns the block state after the call. } type compress_func = function(var s : deflate_state; flush : int) : block_state; {local} procedure fill_window(var s : deflate_state); forward; {local} function deflate_stored(var s : deflate_state; flush : int) : block_state; forward; {local} function deflate_fast(var s : deflate_state; flush : int) : block_state; forward; {local} function deflate_slow(var s : deflate_state; flush : int) : block_state; forward; {local} procedure lm_init(var s : deflate_state); forward; {local} procedure putShortMSB(var s : deflate_state; b : uInt); forward; {local} procedure flush_pending (var strm : z_stream); forward; {local} function read_buf(strm : z_streamp; buf : pBytef; size : unsigned) : int; forward; {$ifdef ASMV} procedure match_init; { asm code initialization } function longest_match(var deflate_state; cur_match : IPos) : uInt; forward; {$else} {local} function longest_match(var s : deflate_state; cur_match : IPos) : uInt; forward; {$endif} {$ifdef DEBUG} {local} procedure check_match(var s : deflate_state; start, match : IPos; length : int); forward; {$endif} { ========================================================================== local data } const ZNIL = 0; { Tail of hash chains } const TOO_FAR = 4096; { Matches of length 3 are discarded if their distance exceeds TOO_FAR } const MIN_LOOKAHEAD = (MAX_MATCH+MIN_MATCH+1); { Minimum amount of lookahead, except at the end of the input file. See deflate.c for comments about the MIN_MATCH+1. } {macro MAX_DIST(var s : deflate_state) : uInt; begin MAX_DIST := (s.w_size - MIN_LOOKAHEAD); end; In order to simplify the code, particularly on 16 bit machines, match distances are limited to MAX_DIST instead of WSIZE. } { Values for max_lazy_match, good_match and max_chain_length, depending on the desired pack level (0..9). The values given below have been tuned to exclude worst case performance for pathological files. Better values may be found for specific files. } type config = record good_length : ush; { reduce lazy search above this match length } max_lazy : ush; { do not perform lazy search above this match length } nice_length : ush; { quit search above this match length } max_chain : ush; func : compress_func; end; {local} const configuration_table : array[0..10-1] of config = ( { good lazy nice chain } {0} (good_length:0; max_lazy:0; nice_length:0; max_chain:0; func:deflate_stored), { store only } {1} (good_length:4; max_lazy:4; nice_length:8; max_chain:4; func:deflate_fast), { maximum speed, no lazy matches } {2} (good_length:4; max_lazy:5; nice_length:16; max_chain:8; func:deflate_fast), {3} (good_length:4; max_lazy:6; nice_length:32; max_chain:32; func:deflate_fast), {4} (good_length:4; max_lazy:4; nice_length:16; max_chain:16; func:deflate_slow), { lazy matches } {5} (good_length:8; max_lazy:16; nice_length:32; max_chain:32; func:deflate_slow), {6} (good_length:8; max_lazy:16; nice_length:128; max_chain:128; func:deflate_slow), {7} (good_length:8; max_lazy:32; nice_length:128; max_chain:256; func:deflate_slow), {8} (good_length:32; max_lazy:128; nice_length:258; max_chain:1024; func:deflate_slow), {9} (good_length:32; max_lazy:258; nice_length:258; max_chain:4096; func:deflate_slow)); { maximum compression } { Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 For deflate_fast() (levels <= 3) good is ignored and lazy has a different meaning. } const EQUAL = 0; { result of memcmp for equal strings } { ========================================================================== Update a hash value with the given input byte IN assertion: all calls to to UPDATE_HASH are made with consecutive input characters, so that a running hash key can be computed from the previous key instead of complete recalculation each time. macro UPDATE_HASH(s,h,c) h := (( (h) shl s^.hash_shift) xor (c)) and s^.hash_mask; } { =========================================================================== Insert string str in the dictionary and set match_head to the previous head of the hash chain (the most recent string with same hash key). Return the previous length of the hash chain. If this file is compiled with -DFASTEST, the compression level is forced to 1, and no hash chains are maintained. IN assertion: all calls to to INSERT_STRING are made with consecutive input characters and the first MIN_MATCH bytes of str are valid (except for the last MIN_MATCH-1 bytes of the input file). } procedure INSERT_STRING(var s : deflate_state; str : uInt; var match_head : IPos); begin {$ifdef FASTEST} {UPDATE_HASH(s, s.ins_h, s.window[(str) + (MIN_MATCH-1)])} s.ins_h := ((s.ins_h shl s.hash_shift) xor (s.window^[(str) + (MIN_MATCH-1)])) and s.hash_mask; match_head := s.head[s.ins_h] s.head[s.ins_h] := Pos(str); {$else} {UPDATE_HASH(s, s.ins_h, s.window[(str) + (MIN_MATCH-1)])} s.ins_h := ((s.ins_h shl s.hash_shift) xor (s.window^[(str) + (MIN_MATCH-1)])) and s.hash_mask; match_head := s.head^[s.ins_h]; s.prev^[(str) and s.w_mask] := match_head; s.head^[s.ins_h] := Pos(str); {$endif} end; { ========================================================================= Initialize the hash table (avoiding 64K overflow for 16 bit systems). prev[] will be initialized on the fly. macro CLEAR_HASH(s) s^.head[s^.hash_size-1] := ZNIL; zmemzero(pBytef(s^.head), unsigned(s^.hash_size-1)*sizeof(s^.head^[0])); } { ======================================================================== } function deflateInit2_(var strm : z_stream; level : int; method : int; windowBits : int; memLevel : int; strategy : int; const version : AnsiString; stream_size : int) : int; var s : deflate_state_ptr; noheader : int; overlay : pushfArray; { We overlay pending_buf and d_buf+l_buf. This works since the average output size for (length,distance) codes is <= 24 bits. } begin noheader := 0; if (version = '') or (version[1] <> ZLIB_VERSION[1]) or (stream_size <> sizeof(z_stream)) then begin deflateInit2_ := Z_VERSION_ERROR; exit; end; { if (strm = Z_NULL) then begin deflateInit2_ := Z_STREAM_ERROR; exit; end; } { SetLength(strm.msg, 255); } strm.msg := ''; if not Assigned(strm.zalloc) then begin {$IFDEF FPC} strm.zalloc := @zcalloc; {$ELSE} strm.zalloc := zcalloc; {$ENDIF} strm.opaque := voidpf(0); end; if not Assigned(strm.zfree) then {$IFDEF FPC} strm.zfree := @zcfree; {$ELSE} strm.zfree := zcfree; {$ENDIF} if (level = Z_DEFAULT_COMPRESSION) then level := 6; {$ifdef FASTEST} level := 1; {$endif} if (windowBits < 0) then { undocumented feature: suppress zlib header } begin noheader := 1; windowBits := -windowBits; end; if (memLevel < 1) or (memLevel > MAX_MEM_LEVEL) or (method <> Z_DEFLATED) or (windowBits < 8) or (windowBits > 15) or (level < 0) or (level > 9) or (strategy < 0) or (strategy > Z_HUFFMAN_ONLY) then begin deflateInit2_ := Z_STREAM_ERROR; exit; end; s := deflate_state_ptr (ZALLOC(strm, 1, sizeof(deflate_state))); if (s = Z_NULL) then begin deflateInit2_ := Z_MEM_ERROR; exit; end; strm.state := pInternal_state(s); s^.strm := @strm; s^.noheader := noheader; s^.w_bits := windowBits; s^.w_size := 1 shl s^.w_bits; s^.w_mask := s^.w_size - 1; s^.hash_bits := memLevel + 7; s^.hash_size := 1 shl s^.hash_bits; s^.hash_mask := s^.hash_size - 1; s^.hash_shift := ((s^.hash_bits+MIN_MATCH-1) div MIN_MATCH); s^.window := pzByteArray (ZALLOC(strm, s^.w_size, 2*sizeof(Byte))); s^.prev := pzPosfArray (ZALLOC(strm, s^.w_size, sizeof(Pos))); s^.head := pzPosfArray (ZALLOC(strm, s^.hash_size, sizeof(Pos))); s^.lit_bufsize := 1 shl (memLevel + 6); { 16K elements by default } overlay := pushfArray (ZALLOC(strm, s^.lit_bufsize, sizeof(ush)+2)); s^.pending_buf := pzByteArray (overlay); s^.pending_buf_size := ulg(s^.lit_bufsize) * (sizeof(ush)+Long(2)); if (s^.window = Z_NULL) or (s^.prev = Z_NULL) or (s^.head = Z_NULL) or (s^.pending_buf = Z_NULL) then begin {ERR_MSG(Z_MEM_ERROR);} strm.msg := z_errmsg[z_errbase-Z_MEM_ERROR]; deflateEnd (strm); deflateInit2_ := Z_MEM_ERROR; exit; end; s^.d_buf := pushfArray( @overlay^[s^.lit_bufsize div sizeof(ush)] ); s^.l_buf := puchfArray( @s^.pending_buf^[(1+sizeof(ush))*s^.lit_bufsize] ); s^.level := level; s^.strategy := strategy; s^.method := Byte(method); deflateInit2_ := deflateReset(strm); end; { ========================================================================= } function deflateInit2(var strm : z_stream; level : int; method : int; windowBits : int; memLevel : int; strategy : int) : int; { a macro } begin deflateInit2 := deflateInit2_(strm, level, method, windowBits, memLevel, strategy, ZLIB_VERSION, sizeof(z_stream)); end; { ========================================================================= } function deflateInit_(strm : z_streamp; level : int; const version : AnsiString; stream_size : int) : int; begin if (strm = Z_NULL) then deflateInit_ := Z_STREAM_ERROR else deflateInit_ := deflateInit2_(strm^, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY, version, stream_size); { To do: ignore strm^.next_in if we use it as window } end; { ========================================================================= } function deflateInit(var strm : z_stream; level : int) : int; { deflateInit is a macro to allow checking the zlib version and the compiler's view of z_stream: } begin deflateInit := deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY, ZLIB_VERSION, sizeof(z_stream)); end; { ======================================================================== } function deflateSetDictionary (var strm : z_stream; dictionary : pBytef; dictLength : uInt) : int; var s : deflate_state_ptr; length : uInt; n : uInt; hash_head : IPos; var MAX_DIST : uInt; {macro} begin length := dictLength; hash_head := 0; if {(@strm = Z_NULL) or} (strm.state = Z_NULL) or (dictionary = Z_NULL) or (deflate_state_ptr(strm.state)^.status <> INIT_STATE) then begin deflateSetDictionary := Z_STREAM_ERROR; exit; end; s := deflate_state_ptr(strm.state); strm.adler := adler32(strm.adler, dictionary, dictLength); if (length < MIN_MATCH) then begin deflateSetDictionary := Z_OK; exit; end; MAX_DIST := (s^.w_size - MIN_LOOKAHEAD); if (length > MAX_DIST) then begin length := MAX_DIST; {$ifndef USE_DICT_HEAD} Inc(dictionary, dictLength - length); { use the tail of the dictionary } {$endif} end; zmemcpy( pBytef(s^.window), dictionary, length); s^.strstart := length; s^.block_start := long(length); { Insert all strings in the hash table (except for the last two bytes). s^.lookahead stays null, so s^.ins_h will be recomputed at the next call of fill_window. } s^.ins_h := s^.window^[0]; {UPDATE_HASH(s, s^.ins_h, s^.window[1]);} s^.ins_h := ((s^.ins_h shl s^.hash_shift) xor (s^.window^[1])) and s^.hash_mask; for n := 0 to length - MIN_MATCH do begin INSERT_STRING(s^, n, hash_head); end; {if (hash_head <> 0) then hash_head := 0; - to make compiler happy } deflateSetDictionary := Z_OK; end; { ======================================================================== } function deflateReset (var strm : z_stream) : int; var s : deflate_state_ptr; begin if {(@strm = Z_NULL) or} (strm.state = Z_NULL) or (not Assigned(strm.zalloc)) or (not Assigned(strm.zfree)) then begin deflateReset := Z_STREAM_ERROR; exit; end; strm.total_out := 0; strm.total_in := 0; strm.msg := ''; { use zfree if we ever allocate msg dynamically } strm.data_type := Z_UNKNOWN; s := deflate_state_ptr(strm.state); s^.pending := 0; s^.pending_out := pBytef(s^.pending_buf); if (s^.noheader < 0) then begin s^.noheader := 0; { was set to -1 by deflate(..., Z_FINISH); } end; if s^.noheader <> 0 then s^.status := BUSY_STATE else s^.status := INIT_STATE; strm.adler := 1; s^.last_flush := Z_NO_FLUSH; _tr_init(s^); lm_init(s^); deflateReset := Z_OK; end; { ======================================================================== } function deflateParams(var strm : z_stream; level : int; strategy : int) : int; var s : deflate_state_ptr; func : compress_func; err : int; begin err := Z_OK; if {(@strm = Z_NULL) or} (strm.state = Z_NULL) then begin deflateParams := Z_STREAM_ERROR; exit; end; s := deflate_state_ptr(strm.state); if (level = Z_DEFAULT_COMPRESSION) then begin level := 6; end; if (level < 0) or (level > 9) or (strategy < 0) or (strategy > Z_HUFFMAN_ONLY) then begin deflateParams := Z_STREAM_ERROR; exit; end; func := configuration_table[s^.level].func; if (@func <> @configuration_table[level].func) and (strm.total_in <> 0) then begin { Flush the last buffer: } err := deflate(strm, Z_PARTIAL_FLUSH); end; if (s^.level <> level) then begin s^.level := level; s^.max_lazy_match := configuration_table[level].max_lazy; s^.good_match := configuration_table[level].good_length; s^.nice_match := configuration_table[level].nice_length; s^.max_chain_length := configuration_table[level].max_chain; end; s^.strategy := strategy; deflateParams := err; end; { ========================================================================= Put a short in the pending buffer. The 16-bit value is put in MSB order. IN assertion: the stream state is correct and there is enough room in pending_buf. } {local} procedure putShortMSB (var s : deflate_state; b : uInt); begin s.pending_buf^[s.pending] := Byte(b shr 8); Inc(s.pending); s.pending_buf^[s.pending] := Byte(b and $ff); Inc(s.pending); end; { ========================================================================= Flush as much pending output as possible. All deflate() output goes through this function so some applications may wish to modify it to avoid allocating a large strm^.next_out buffer and copying into it. (See also read_buf()). } {local} procedure flush_pending(var strm : z_stream); var len : unsigned; s : deflate_state_ptr; begin s := deflate_state_ptr(strm.state); len := s^.pending; if (len > strm.avail_out) then len := strm.avail_out; if (len = 0) then exit; zmemcpy(strm.next_out, s^.pending_out, len); Inc(strm.next_out, len); Inc(s^.pending_out, len); Inc(strm.total_out, len); Dec(strm.avail_out, len); Dec(s^.pending, len); if (s^.pending = 0) then begin s^.pending_out := pBytef(s^.pending_buf); end; end; { ========================================================================= } function deflate (var strm : z_stream; flush : int) : int; var old_flush : int; { value of flush param for previous deflate call } s : deflate_state_ptr; var header : uInt; level_flags : uInt; var bstate : block_state; begin if {(@strm = Z_NULL) or} (strm.state = Z_NULL) or (flush > Z_FINISH) or (flush < 0) then begin deflate := Z_STREAM_ERROR; exit; end; s := deflate_state_ptr(strm.state); if (strm.next_out = Z_NULL) or ((strm.next_in = Z_NULL) and (strm.avail_in <> 0)) or ((s^.status = FINISH_STATE) and (flush <> Z_FINISH)) then begin {ERR_RETURN(strm^, Z_STREAM_ERROR);} strm.msg := z_errmsg[z_errbase - Z_STREAM_ERROR]; deflate := Z_STREAM_ERROR; exit; end; if (strm.avail_out = 0) then begin {ERR_RETURN(strm^, Z_BUF_ERROR);} strm.msg := z_errmsg[z_errbase - Z_BUF_ERROR]; deflate := Z_BUF_ERROR; exit; end; s^.strm := @strm; { just in case } old_flush := s^.last_flush; s^.last_flush := flush; { Write the zlib header } if (s^.status = INIT_STATE) then begin header := (Z_DEFLATED + ((s^.w_bits-8) shl 4)) shl 8; level_flags := (s^.level-1) shr 1; if (level_flags > 3) then level_flags := 3; header := header or (level_flags shl 6); if (s^.strstart <> 0) then header := header or PRESET_DICT; Inc(header, 31 - (header mod 31)); s^.status := BUSY_STATE; putShortMSB(s^, header); { Save the adler32 of the preset dictionary: } if (s^.strstart <> 0) then begin putShortMSB(s^, uInt(strm.adler shr 16)); putShortMSB(s^, uInt(strm.adler and $ffff)); end; strm.adler := long(1); end; { Flush as much pending output as possible } if (s^.pending <> 0) then begin flush_pending(strm); if (strm.avail_out = 0) then begin { Since avail_out is 0, deflate will be called again with more output space, but possibly with both pending and avail_in equal to zero. There won't be anything to do, but this is not an error situation so make sure we return OK instead of BUF_ERROR at next call of deflate: } s^.last_flush := -1; deflate := Z_OK; exit; end; { Make sure there is something to do and avoid duplicate consecutive flushes. For repeated and useless calls with Z_FINISH, we keep returning Z_STREAM_END instead of Z_BUFF_ERROR. } end else if (strm.avail_in = 0) and (flush <= old_flush) and (flush <> Z_FINISH) then begin {ERR_RETURN(strm^, Z_BUF_ERROR);} strm.msg := z_errmsg[z_errbase - Z_BUF_ERROR]; deflate := Z_BUF_ERROR; exit; end; { User must not provide more input after the first FINISH: } if (s^.status = FINISH_STATE) and (strm.avail_in <> 0) then begin {ERR_RETURN(strm^, Z_BUF_ERROR);} strm.msg := z_errmsg[z_errbase - Z_BUF_ERROR]; deflate := Z_BUF_ERROR; exit; end; { Start a new block or continue the current one. } if (strm.avail_in <> 0) or (s^.lookahead <> 0) or ((flush <> Z_NO_FLUSH) and (s^.status <> FINISH_STATE)) then begin bstate := configuration_table[s^.level].func(s^, flush); if (bstate = finish_started) or (bstate = finish_done) then s^.status := FINISH_STATE; if (bstate = need_more) or (bstate = finish_started) then begin if (strm.avail_out = 0) then s^.last_flush := -1; { avoid BUF_ERROR next call, see above } deflate := Z_OK; exit; { If flush != Z_NO_FLUSH && avail_out == 0, the next call of deflate should use the same flush parameter to make sure that the flush is complete. So we don't have to output an empty block here, this will be done at next call. This also ensures that for a very small output buffer, we emit at most one empty block. } end; if (bstate = block_done) then begin if (flush = Z_PARTIAL_FLUSH) then _tr_align(s^) else begin { FULL_FLUSH or SYNC_FLUSH } _tr_stored_block(s^, pcharf(NIL), Long(0), FALSE); { For a full flush, this empty block will be recognized as a special marker by inflate_sync(). } if (flush = Z_FULL_FLUSH) then begin {macro CLEAR_HASH(s);} { forget history } s^.head^[s^.hash_size-1] := ZNIL; zmemzero(pBytef(s^.head), unsigned(s^.hash_size-1)*sizeof(s^.head^[0])); end; end; flush_pending(strm); if (strm.avail_out = 0) then begin s^.last_flush := -1; { avoid BUF_ERROR at next call, see above } deflate := Z_OK; exit; end; end; end; {$IFDEF DEBUG} Assert(strm.avail_out > 0, 'bug2'); {$ENDIF} if (flush <> Z_FINISH) then begin deflate := Z_OK; exit; end; if (s^.noheader <> 0) then begin deflate := Z_STREAM_END; exit; end; { Write the zlib trailer (adler32) } putShortMSB(s^, uInt(strm.adler shr 16)); putShortMSB(s^, uInt(strm.adler and $ffff)); flush_pending(strm); { If avail_out is zero, the application will call deflate again to flush the rest. } s^.noheader := -1; { write the trailer only once! } if s^.pending <> 0 then deflate := Z_OK else deflate := Z_STREAM_END; end; { ========================================================================= } function deflateEnd (var strm : z_stream) : int; var status : int; s : deflate_state_ptr; begin if {(@strm = Z_NULL) or} (strm.state = Z_NULL) then begin deflateEnd := Z_STREAM_ERROR; exit; end; s := deflate_state_ptr(strm.state); status := s^.status; if (status <> INIT_STATE) and (status <> BUSY_STATE) and (status <> FINISH_STATE) then begin deflateEnd := Z_STREAM_ERROR; exit; end; { Deallocate in reverse order of allocations: } TRY_FREE(strm, s^.pending_buf); TRY_FREE(strm, s^.head); TRY_FREE(strm, s^.prev); TRY_FREE(strm, s^.window); ZFREE(strm, s); strm.state := Z_NULL; if status = BUSY_STATE then deflateEnd := Z_DATA_ERROR else deflateEnd := Z_OK; end; { ========================================================================= Copy the source state to the destination state. To simplify the source, this is not supported for 16-bit MSDOS (which doesn't have enough memory anyway to duplicate compression states). } { ========================================================================= } function deflateCopy (dest, source : z_streamp) : int; {$ifndef MAXSEG_64K} var ds : deflate_state_ptr; ss : deflate_state_ptr; overlay : pushfArray; {$endif} begin {$ifdef MAXSEG_64K} deflateCopy := Z_STREAM_ERROR; exit; {$else} if (source = Z_NULL) or (dest = Z_NULL) or (source^.state = Z_NULL) then begin deflateCopy := Z_STREAM_ERROR; exit; end; ss := deflate_state_ptr(source^.state); dest^ := source^; ds := deflate_state_ptr( ZALLOC(dest^, 1, sizeof(deflate_state)) ); if (ds = Z_NULL) then begin deflateCopy := Z_MEM_ERROR; exit; end; dest^.state := pInternal_state(ds); ds^ := ss^; ds^.strm := dest; ds^.window := pzByteArray ( ZALLOC(dest^, ds^.w_size, 2*sizeof(Byte)) ); ds^.prev := pzPosfArray ( ZALLOC(dest^, ds^.w_size, sizeof(Pos)) ); ds^.head := pzPosfArray ( ZALLOC(dest^, ds^.hash_size, sizeof(Pos)) ); overlay := pushfArray ( ZALLOC(dest^, ds^.lit_bufsize, sizeof(ush)+2) ); ds^.pending_buf := pzByteArray ( overlay ); if (ds^.window = Z_NULL) or (ds^.prev = Z_NULL) or (ds^.head = Z_NULL) or (ds^.pending_buf = Z_NULL) then begin deflateEnd (dest^); deflateCopy := Z_MEM_ERROR; exit; end; { following zmemcpy do not work for 16-bit MSDOS } zmemcpy(pBytef(ds^.window), pBytef(ss^.window), ds^.w_size * 2 * sizeof(Byte)); zmemcpy(pBytef(ds^.prev), pBytef(ss^.prev), ds^.w_size * sizeof(Pos)); zmemcpy(pBytef(ds^.head), pBytef(ss^.head), ds^.hash_size * sizeof(Pos)); zmemcpy(pBytef(ds^.pending_buf), pBytef(ss^.pending_buf), uInt(ds^.pending_buf_size)); ds^.pending_out := @ds^.pending_buf^[ptr2int(ss^.pending_out) - ptr2int(ss^.pending_buf)]; ds^.d_buf := pushfArray (@overlay^[ds^.lit_bufsize div sizeof(ush)] ); ds^.l_buf := puchfArray (@ds^.pending_buf^[(1+sizeof(ush))*ds^.lit_bufsize]); ds^.l_desc.dyn_tree := tree_ptr(@ds^.dyn_ltree); ds^.d_desc.dyn_tree := tree_ptr(@ds^.dyn_dtree); ds^.bl_desc.dyn_tree := tree_ptr(@ds^.bl_tree); deflateCopy := Z_OK; {$endif} end; { =========================================================================== Read a new buffer from the current input stream, update the adler32 and total number of bytes read. All deflate() input goes through this function so some applications may wish to modify it to avoid allocating a large strm^.next_in buffer and copying from it. (See also flush_pending()). } {local} function read_buf(strm : z_streamp; buf : pBytef; size : unsigned) : int; var len : unsigned; begin len := strm^.avail_in; if (len > size) then len := size; if (len = 0) then begin read_buf := 0; exit; end; Dec(strm^.avail_in, len); if deflate_state_ptr(strm^.state)^.noheader = 0 then begin strm^.adler := adler32(strm^.adler, strm^.next_in, len); end; zmemcpy(buf, strm^.next_in, len); Inc(strm^.next_in, len); Inc(strm^.total_in, len); read_buf := int(len); end; { =========================================================================== Initialize the "longest match" routines for a new zlib stream } {local} procedure lm_init (var s : deflate_state); begin s.window_size := ulg( uLong(2)*s.w_size); {macro CLEAR_HASH(s);} s.head^[s.hash_size-1] := ZNIL; zmemzero(pBytef(s.head), unsigned(s.hash_size-1)*sizeof(s.head^[0])); { Set the default configuration parameters: } s.max_lazy_match := configuration_table[s.level].max_lazy; s.good_match := configuration_table[s.level].good_length; s.nice_match := configuration_table[s.level].nice_length; s.max_chain_length := configuration_table[s.level].max_chain; s.strstart := 0; s.block_start := long(0); s.lookahead := 0; s.prev_length := MIN_MATCH-1; s.match_length := MIN_MATCH-1; s.match_available := FALSE; s.ins_h := 0; {$ifdef ASMV} match_init; { initialize the asm code } {$endif} end; { =========================================================================== Set match_start to the longest match starting at the given string and return its length. Matches shorter or equal to prev_length are discarded, in which case the result is equal to prev_length and match_start is garbage. IN assertions: cur_match is the head of the hash chain for the current string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 OUT assertion: the match length is not greater than s^.lookahead. } {$ifndef ASMV} { For 80x86 and 680x0, an optimized version will be provided in match.asm or match.S. The code will be functionally equivalent. } {$ifndef FASTEST} {local} function longest_match(var s : deflate_state; cur_match : IPos { current match } ) : uInt; label nextstep; var chain_length : unsigned; { max hash chain length } {register} scan : pBytef; { current string } {register} match : pBytef; { matched string } {register} len : int; { length of current match } best_len : int; { best match length so far } nice_match : int; { stop if match long enough } limit : IPos; prev : pzPosfArray; wmask : uInt; {$ifdef UNALIGNED_OK} {register} strend : pBytef; {register} scan_start : ush; {register} scan_end : ush; {$else} {register} strend : pBytef; {register} scan_end1 : Byte; {register} scan_end : Byte; {$endif} var MAX_DIST : uInt; begin chain_length := s.max_chain_length; { max hash chain length } scan := @(s.window^[s.strstart]); best_len := s.prev_length; { best match length so far } nice_match := s.nice_match; { stop if match long enough } MAX_DIST := s.w_size - MIN_LOOKAHEAD; {In order to simplify the code, particularly on 16 bit machines, match distances are limited to MAX_DIST instead of WSIZE. } if s.strstart > IPos(MAX_DIST) then limit := s.strstart - IPos(MAX_DIST) else limit := ZNIL; { Stop when cur_match becomes <= limit. To simplify the code, we prevent matches with the string of window index 0. } prev := s.prev; wmask := s.w_mask; {$ifdef UNALIGNED_OK} { Compare two bytes at a time. Note: this is not always beneficial. Try with and without -DUNALIGNED_OK to check. } strend := pBytef(@(s.window^[s.strstart + MAX_MATCH - 1])); scan_start := pushf(scan)^; scan_end := pushfArray(scan)^[best_len-1]; { fix } {$else} strend := pBytef(@(s.window^[s.strstart + MAX_MATCH])); {$IFOPT R+} {$R-} {$DEFINE NoRangeCheck} {$ENDIF} scan_end1 := pzByteArray(scan)^[best_len-1]; {$IFDEF NoRangeCheck} {$R+} {$UNDEF NoRangeCheck} {$ENDIF} scan_end := pzByteArray(scan)^[best_len]; {$endif} { The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. It is easy to get rid of this optimization if necessary. } {$IFDEF DEBUG} Assert((s.hash_bits >= 8) and (MAX_MATCH = 258), 'Code too clever'); {$ENDIF} { Do not waste too much time if we already have a good match: } if (s.prev_length >= s.good_match) then begin chain_length := chain_length shr 2; end; { Do not look for matches beyond the end of the input. This is necessary to make deflate deterministic. } if (uInt(nice_match) > s.lookahead) then nice_match := s.lookahead; {$IFDEF DEBUG} Assert(ulg(s.strstart) <= s.window_size-MIN_LOOKAHEAD, 'need lookahead'); {$ENDIF} repeat {$IFDEF DEBUG} Assert(cur_match < s.strstart, 'no future'); {$ENDIF} match := @(s.window^[cur_match]); { Skip to next match if the match length cannot increase or if the match length is less than 2: } {$undef DO_UNALIGNED_OK} {$ifdef UNALIGNED_OK} {$ifdef MAX_MATCH_IS_258} {$define DO_UNALIGNED_OK} {$endif} {$endif} {$ifdef DO_UNALIGNED_OK} { This code assumes sizeof(unsigned short) = 2. Do not use UNALIGNED_OK if your compiler uses a different size. } {$IFOPT R+} {$R-} {$DEFINE NoRangeCheck} {$ENDIF} if (pushfArray(match)^[best_len-1] <> scan_end) or (pushf(match)^ <> scan_start) then goto nextstep; {continue;} {$IFDEF NoRangeCheck} {$R+} {$UNDEF NoRangeCheck} {$ENDIF} { It is not necessary to compare scan[2] and match[2] since they are always equal when the other bytes match, given that the hash keys are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at strstart+3, +5, ... up to strstart+257. We check for insufficient lookahead only every 4th comparison; the 128th check will be made at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is necessary to put more guard bytes at the end of the window, or to check more often for insufficient lookahead. } {$IFDEF DEBUG} Assert(pzByteArray(scan)^[2] = pzByteArray(match)^[2], 'scan[2]?'); {$ENDIF} Inc(scan); Inc(match); repeat Inc(scan,2); Inc(match,2); if (pushf(scan)^<>pushf(match)^) then break; Inc(scan,2); Inc(match,2); if (pushf(scan)^<>pushf(match)^) then break; Inc(scan,2); Inc(match,2); if (pushf(scan)^<>pushf(match)^) then break; Inc(scan,2); Inc(match,2); if (pushf(scan)^<>pushf(match)^) then break; until (ptr2int(scan) >= ptr2int(strend)); { The funny "do while" generates better code on most compilers } { Here, scan <= window+strstart+257 } {$IFDEF DEBUG} {$ifopt R+} {$define RangeCheck} {$endif} {$R-} Assert(ptr2int(scan) <= ptr2int(@(s.window^[unsigned(s.window_size-1)])), 'wild scan'); {$ifdef RangeCheck} {$R+} {$undef RangeCheck} {$endif} {$ENDIF} if (scan^ = match^) then Inc(scan); len := (MAX_MATCH - 1) - int(ptr2int(strend)) + int(ptr2int(scan)); scan := strend; Dec(scan, (MAX_MATCH-1)); {$else} { UNALIGNED_OK } {$IFOPT R+} {$R-} {$DEFINE NoRangeCheck} {$ENDIF} if (pzByteArray(match)^[best_len] <> scan_end) or (pzByteArray(match)^[best_len-1] <> scan_end1) or (match^ <> scan^) then goto nextstep; {continue;} {$IFDEF NoRangeCheck} {$R+} {$UNDEF NoRangeCheck} {$ENDIF} Inc(match); if (match^ <> pzByteArray(scan)^[1]) then goto nextstep; {continue;} { The check at best_len-1 can be removed because it will be made again later. (This heuristic is not always a win.) It is not necessary to compare scan[2] and match[2] since they are always equal when the other bytes match, given that the hash keys are equal and that HASH_BITS >= 8. } Inc(scan, 2); Inc(match); {$IFDEF DEBUG} Assert( scan^ = match^, 'match[2]?'); {$ENDIF} { We check for insufficient lookahead only every 8th comparison; the 256th check will be made at strstart+258. } repeat Inc(scan); Inc(match); if (scan^ <> match^) then break; Inc(scan); Inc(match); if (scan^ <> match^) then break; Inc(scan); Inc(match); if (scan^ <> match^) then break; Inc(scan); Inc(match); if (scan^ <> match^) then break; Inc(scan); Inc(match); if (scan^ <> match^) then break; Inc(scan); Inc(match); if (scan^ <> match^) then break; Inc(scan); Inc(match); if (scan^ <> match^) then break; Inc(scan); Inc(match); if (scan^ <> match^) then break; until (ptr2int(scan) >= ptr2int(strend)); {$IFDEF DEBUG} Assert(ptr2int(scan) <= ptr2int(@(s.window^[unsigned(s.window_size-1)])), 'wild scan'); {$ENDIF} len := MAX_MATCH - int(ptr2int(strend) - ptr2int(scan)); scan := strend; Dec(scan, MAX_MATCH); {$endif} { UNALIGNED_OK } if (len > best_len) then begin s.match_start := cur_match; best_len := len; if (len >= nice_match) then break; {$IFOPT R+} {$R-} {$DEFINE NoRangeCheck} {$ENDIF} {$ifdef UNALIGNED_OK} scan_end := pzByteArray(scan)^[best_len-1]; {$else} scan_end1 := pzByteArray(scan)^[best_len-1]; scan_end := pzByteArray(scan)^[best_len]; {$endif} {$IFDEF NoRangeCheck} {$R+} {$UNDEF NoRangeCheck} {$ENDIF} end; nextstep: cur_match := prev^[cur_match and wmask]; Dec(chain_length); until (cur_match <= limit) or (chain_length = 0); if (uInt(best_len) <= s.lookahead) then longest_match := uInt(best_len) else longest_match := s.lookahead; end; {$endif} { ASMV } {$else} { FASTEST } { --------------------------------------------------------------------------- Optimized version for level = 1 only } {local} function longest_match(var s : deflate_state; cur_match : IPos { current match } ) : uInt; var {register} scan : pBytef; { current string } {register} match : pBytef; { matched string } {register} len : int; { length of current match } {register} strend : pBytef; begin scan := @s.window^[s.strstart]; strend := @s.window^[s.strstart + MAX_MATCH]; { The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. It is easy to get rid of this optimization if necessary. } {$IFDEF DEBUG} Assert((s.hash_bits >= 8) and (MAX_MATCH = 258), 'Code too clever'); Assert(ulg(s.strstart) <= s.window_size-MIN_LOOKAHEAD, 'need lookahead'); Assert(cur_match < s.strstart, 'no future'); {$ENDIF} match := s.window + cur_match; { Return failure if the match length is less than 2: } if (match[0] <> scan[0]) or (match[1] <> scan[1]) then begin longest_match := MIN_MATCH-1; exit; end; { The check at best_len-1 can be removed because it will be made again later. (This heuristic is not always a win.) It is not necessary to compare scan[2] and match[2] since they are always equal when the other bytes match, given that the hash keys are equal and that HASH_BITS >= 8. } scan += 2, match += 2; Assert(scan^ = match^, 'match[2]?'); { We check for insufficient lookahead only every 8th comparison; the 256th check will be made at strstart+258. } repeat Inc(scan); Inc(match); if scan^<>match^ then break; Inc(scan); Inc(match); if scan^<>match^ then break; Inc(scan); Inc(match); if scan^<>match^ then break; Inc(scan); Inc(match); if scan^<>match^ then break; Inc(scan); Inc(match); if scan^<>match^ then break; Inc(scan); Inc(match); if scan^<>match^ then break; Inc(scan); Inc(match); if scan^<>match^ then break; Inc(scan); Inc(match); if scan^<>match^ then break; until (ptr2int(scan) >= ptr2int(strend)); Assert(scan <= s.window+unsigned(s.window_size-1), 'wild scan'); len := MAX_MATCH - int(strend - scan); if (len < MIN_MATCH) then begin return := MIN_MATCH - 1; exit; end; s.match_start := cur_match; if len <= s.lookahead then longest_match := len else longest_match := s.lookahead; end; {$endif} { FASTEST } {$ifdef DEBUG} { =========================================================================== Check that the match at match_start is indeed a match. } {local} procedure check_match(var s : deflate_state; start, match : IPos; length : int); begin exit; { check that the match is indeed a match } if (zmemcmp(pBytef(@s.window^[match]), pBytef(@s.window^[start]), length) <> EQUAL) then begin WriteLn(' start ',start,', match ',match ,' length ', length); repeat Write(AnsiChar(s.window^[match]), AnsiChar(s.window^[start])); Inc(match); Inc(start); Dec(length); Until (length = 0); z_error('invalid match'); end; if (z_verbose > 1) then begin Write('\\[',start-match,',',length,']'); repeat Write(AnsiChar(s.window^[start])); Inc(start); Dec(length); Until (length = 0); end; end; {$endif} { =========================================================================== Fill the window when the lookahead becomes insufficient. Updates strstart and lookahead. IN assertion: lookahead < MIN_LOOKAHEAD OUT assertions: strstart <= window_size-MIN_LOOKAHEAD At least one byte has been read, or avail_in = 0; reads are performed for at least two bytes (required for the zip translate_eol option -- not supported here). } {local} procedure fill_window(var s : deflate_state); var {register} n, m : unsigned; {register} p : pPosf; more : unsigned; { Amount of free space at the end of the window. } wsize : uInt; begin wsize := s.w_size; repeat more := unsigned(s.window_size -ulg(s.lookahead) -ulg(s.strstart)); { Deal with !@#$% 64K limit: } if (more = 0) and (s.strstart = 0) and (s.lookahead = 0) then more := wsize else if (more = unsigned(-1)) then begin { Very unlikely, but possible on 16 bit machine if strstart = 0 and lookahead = 1 (input done one byte at time) } Dec(more); { If the window is almost full and there is insufficient lookahead, move the upper half to the lower one to make room in the upper half.} end else if (s.strstart >= wsize+ {MAX_DIST}(wsize-MIN_LOOKAHEAD)) then begin zmemcpy( pBytef(s.window), pBytef(@(s.window^[wsize])), unsigned(wsize)); Dec(s.match_start, wsize); Dec(s.strstart, wsize); { we now have strstart >= MAX_DIST } Dec(s.block_start, long(wsize)); { Slide the hash table (could be avoided with 32 bit values at the expense of memory usage). We slide even when level = 0 to keep the hash table consistent if we switch back to level > 0 later. (Using level 0 permanently is not an optimal usage of zlib, so we don't care about this pathological case.) } n := s.hash_size; p := @s.head^[n]; repeat Dec(p); m := p^; if (m >= wsize) then p^ := Pos(m-wsize) else p^ := Pos(ZNIL); Dec(n); Until (n=0); n := wsize; {$ifndef FASTEST} p := @s.prev^[n]; repeat Dec(p); m := p^; if (m >= wsize) then p^ := Pos(m-wsize) else p^:= Pos(ZNIL); { If n is not on any hash chain, prev^[n] is garbage but its value will never be used. } Dec(n); Until (n=0); {$endif} Inc(more, wsize); end; if (s.strm^.avail_in = 0) then exit; {* If there was no sliding: * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && * more == window_size - lookahead - strstart * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) * => more >= window_size - 2*WSIZE + 2 * In the BIG_MEM or MMAP case (not yet supported), * window_size == input_size + MIN_LOOKAHEAD && * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. * Otherwise, window_size == 2*WSIZE so more >= 2. * If there was sliding, more >= WSIZE. So in all cases, more >= 2. } {$IFDEF DEBUG} Assert(more >= 2, 'more < 2'); {$ENDIF} n := read_buf(s.strm, pBytef(@(s.window^[s.strstart + s.lookahead])), more); Inc(s.lookahead, n); { Initialize the hash value now that we have some input: } if (s.lookahead >= MIN_MATCH) then begin s.ins_h := s.window^[s.strstart]; {UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]);} s.ins_h := ((s.ins_h shl s.hash_shift) xor s.window^[s.strstart+1]) and s.hash_mask; {$ifdef MIN_MATCH <> 3} Call UPDATE_HASH() MIN_MATCH-3 more times {$endif} end; { If the whole input has less than MIN_MATCH bytes, ins_h is garbage, but this is not important since only literal bytes will be emitted. } until (s.lookahead >= MIN_LOOKAHEAD) or (s.strm^.avail_in = 0); end; { =========================================================================== Flush the current block, with given end-of-file flag. IN assertion: strstart is set to the end of the current match. } procedure FLUSH_BLOCK_ONLY(var s : deflate_state; eof : boolean); {macro} begin if (s.block_start >= Long(0)) then _tr_flush_block(s, pcharf(@s.window^[unsigned(s.block_start)]), ulg(long(s.strstart) - s.block_start), eof) else _tr_flush_block(s, pcharf(Z_NULL), ulg(long(s.strstart) - s.block_start), eof); s.block_start := s.strstart; flush_pending(s.strm^); {$IFDEF DEBUG} Tracev('[FLUSH]'); {$ENDIF} end; { Same but force premature exit if necessary. macro FLUSH_BLOCK(var s : deflate_state; eof : boolean) : boolean; var result : block_state; begin FLUSH_BLOCK_ONLY(s, eof); if (s.strm^.avail_out = 0) then begin if eof then result := finish_started else result := need_more; exit; end; end; } { =========================================================================== Copy without compression as much as possible from the input stream, return the current block state. This function does not insert new strings in the dictionary since uncompressible data is probably not useful. This function is used only for the level=0 compression option. NOTE: this function should be optimized to avoid extra copying from window to pending_buf. } {local} function deflate_stored(var s : deflate_state; flush : int) : block_state; { Stored blocks are limited to 0xffff bytes, pending_buf is limited to pending_buf_size, and each stored block has a 5 byte header: } var max_block_size : ulg; max_start : ulg; begin max_block_size := $ffff; if (max_block_size > s.pending_buf_size - 5) then max_block_size := s.pending_buf_size - 5; { Copy as much as possible from input to output: } while TRUE do begin { Fill the window as much as possible: } if (s.lookahead <= 1) then begin {$IFDEF DEBUG} Assert( (s.strstart < s.w_size + {MAX_DIST}s.w_size-MIN_LOOKAHEAD) or (s.block_start >= long(s.w_size)), 'slide too late'); {$ENDIF} fill_window(s); if (s.lookahead = 0) and (flush = Z_NO_FLUSH) then begin deflate_stored := need_more; exit; end; if (s.lookahead = 0) then break; { flush the current block } end; {$IFDEF DEBUG} Assert(s.block_start >= long(0), 'block gone'); {$ENDIF} Inc(s.strstart, s.lookahead); s.lookahead := 0; { Emit a stored block if pending_buf will be full: } max_start := s.block_start + max_block_size; if (s.strstart = 0) or (ulg(s.strstart) >= max_start) then begin { strstart = 0 is possible when wraparound on 16-bit machine } s.lookahead := s.strstart - uInt(max_start); s.strstart := uInt(max_start); {FLUSH_BLOCK(s, FALSE);} FLUSH_BLOCK_ONLY(s, FALSE); if (s.strm^.avail_out = 0) then begin deflate_stored := need_more; exit; end; end; { Flush if we may have to slide, otherwise block_start may become negative and the data will be gone: } if (s.strstart - uInt(s.block_start) >= {MAX_DIST} s.w_size-MIN_LOOKAHEAD) then begin {FLUSH_BLOCK(s, FALSE);} FLUSH_BLOCK_ONLY(s, FALSE); if (s.strm^.avail_out = 0) then begin deflate_stored := need_more; exit; end; end; end; {FLUSH_BLOCK(s, flush = Z_FINISH);} FLUSH_BLOCK_ONLY(s, flush = Z_FINISH); if (s.strm^.avail_out = 0) then begin if flush = Z_FINISH then deflate_stored := finish_started else deflate_stored := need_more; exit; end; if flush = Z_FINISH then deflate_stored := finish_done else deflate_stored := block_done; end; { =========================================================================== Compress as much as possible from the input stream, return the current block state. This function does not perform lazy evaluation of matches and inserts new strings in the dictionary only for unmatched strings or for short matches. It is used only for the fast compression options. } {local} function deflate_fast(var s : deflate_state; flush : int) : block_state; var hash_head : IPos; { head of the hash chain } bflush : boolean; { set if current block must be flushed } begin hash_head := ZNIL; while TRUE do begin { Make sure that we always have enough lookahead, except at the end of the input file. We need MAX_MATCH bytes for the next match, plus MIN_MATCH bytes to insert the string following the next match. } if (s.lookahead < MIN_LOOKAHEAD) then begin fill_window(s); if (s.lookahead < MIN_LOOKAHEAD) and (flush = Z_NO_FLUSH) then begin deflate_fast := need_more; exit; end; if (s.lookahead = 0) then break; { flush the current block } end; { Insert the string window[strstart .. strstart+2] in the dictionary, and set hash_head to the head of the hash chain: } if (s.lookahead >= MIN_MATCH) then begin INSERT_STRING(s, s.strstart, hash_head); end; { Find the longest match, discarding those <= prev_length. At this point we have always match_length < MIN_MATCH } if (hash_head <> ZNIL) and (s.strstart - hash_head <= (s.w_size-MIN_LOOKAHEAD){MAX_DIST}) then begin { To simplify the code, we prevent matches with the string of window index 0 (in particular we have to avoid a match of the string with itself at the start of the input file). } if (s.strategy <> Z_HUFFMAN_ONLY) then begin s.match_length := longest_match (s, hash_head); end; { longest_match() sets match_start } end; if (s.match_length >= MIN_MATCH) then begin {$IFDEF DEBUG} check_match(s, s.strstart, s.match_start, s.match_length); {$ENDIF} {_tr_tally_dist(s, s.strstart - s.match_start, s.match_length - MIN_MATCH, bflush);} bflush := _tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH); Dec(s.lookahead, s.match_length); { Insert new strings in the hash table only if the match length is not too large. This saves time but degrades compression. } {$ifndef FASTEST} if (s.match_length <= s.max_insert_length) and (s.lookahead >= MIN_MATCH) then begin Dec(s.match_length); { string at strstart already in hash table } repeat Inc(s.strstart); INSERT_STRING(s, s.strstart, hash_head); { strstart never exceeds WSIZE-MAX_MATCH, so there are always MIN_MATCH bytes ahead. } Dec(s.match_length); until (s.match_length = 0); Inc(s.strstart); end else {$endif} begin Inc(s.strstart, s.match_length); s.match_length := 0; s.ins_h := s.window^[s.strstart]; {UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]);} s.ins_h := (( s.ins_h shl s.hash_shift) xor s.window^[s.strstart+1]) and s.hash_mask; if MIN_MATCH <> 3 then { the linker removes this } begin {Call UPDATE_HASH() MIN_MATCH-3 more times} end; { If lookahead < MIN_MATCH, ins_h is garbage, but it does not matter since it will be recomputed at next deflate call. } end; end else begin { No match, output a literal byte } {$IFDEF DEBUG} Tracevv(AnsiChar(s.window^[s.strstart])); {$ENDIF} {_tr_tally_lit (s, 0, s.window^[s.strstart], bflush);} bflush := _tr_tally (s, 0, s.window^[s.strstart]); Dec(s.lookahead); Inc(s.strstart); end; if bflush then begin {FLUSH_BLOCK(s, FALSE);} FLUSH_BLOCK_ONLY(s, FALSE); if (s.strm^.avail_out = 0) then begin deflate_fast := need_more; exit; end; end; end; {FLUSH_BLOCK(s, flush = Z_FINISH);} FLUSH_BLOCK_ONLY(s, flush = Z_FINISH); if (s.strm^.avail_out = 0) then begin if flush = Z_FINISH then deflate_fast := finish_started else deflate_fast := need_more; exit; end; if flush = Z_FINISH then deflate_fast := finish_done else deflate_fast := block_done; end; { =========================================================================== Same as above, but achieves better compression. We use a lazy evaluation for matches: a match is finally adopted only if there is no better match at the next window position. } {local} function deflate_slow(var s : deflate_state; flush : int) : block_state; var hash_head : IPos; { head of hash chain } bflush : boolean; { set if current block must be flushed } var max_insert : uInt; begin hash_head := ZNIL; { Process the input block. } while TRUE do begin { Make sure that we always have enough lookahead, except at the end of the input file. We need MAX_MATCH bytes for the next match, plus MIN_MATCH bytes to insert the string following the next match. } if (s.lookahead < MIN_LOOKAHEAD) then begin fill_window(s); if (s.lookahead < MIN_LOOKAHEAD) and (flush = Z_NO_FLUSH) then begin deflate_slow := need_more; exit; end; if (s.lookahead = 0) then break; { flush the current block } end; { Insert the string window[strstart .. strstart+2] in the dictionary, and set hash_head to the head of the hash chain: } if (s.lookahead >= MIN_MATCH) then begin INSERT_STRING(s, s.strstart, hash_head); end; { Find the longest match, discarding those <= prev_length. } s.prev_length := s.match_length; s.prev_match := s.match_start; s.match_length := MIN_MATCH-1; if (hash_head <> ZNIL) and (s.prev_length < s.max_lazy_match) and (s.strstart - hash_head <= {MAX_DIST}(s.w_size-MIN_LOOKAHEAD)) then begin { To simplify the code, we prevent matches with the string of window index 0 (in particular we have to avoid a match of the string with itself at the start of the input file). } if (s.strategy <> Z_HUFFMAN_ONLY) then begin s.match_length := longest_match (s, hash_head); end; { longest_match() sets match_start } if (s.match_length <= 5) and ((s.strategy = Z_FILTERED) or ((s.match_length = MIN_MATCH) and (s.strstart - s.match_start > TOO_FAR))) then begin { If prev_match is also MIN_MATCH, match_start is garbage but we will ignore the current match anyway. } s.match_length := MIN_MATCH-1; end; end; { If there was a match at the previous step and the current match is not better, output the previous match: } if (s.prev_length >= MIN_MATCH) and (s.match_length <= s.prev_length) then begin max_insert := s.strstart + s.lookahead - MIN_MATCH; { Do not insert strings in hash table beyond this. } {$ifdef DEBUG} check_match(s, s.strstart-1, s.prev_match, s.prev_length); {$endif} {_tr_tally_dist(s, s->strstart -1 - s->prev_match, s->prev_length - MIN_MATCH, bflush);} bflush := _tr_tally(s, s.strstart -1 - s.prev_match, s.prev_length - MIN_MATCH); { Insert in hash table all strings up to the end of the match. strstart-1 and strstart are already inserted. If there is not enough lookahead, the last two strings are not inserted in the hash table. } Dec(s.lookahead, s.prev_length-1); Dec(s.prev_length, 2); repeat Inc(s.strstart); if (s.strstart <= max_insert) then begin INSERT_STRING(s, s.strstart, hash_head); end; Dec(s.prev_length); until (s.prev_length = 0); s.match_available := FALSE; s.match_length := MIN_MATCH-1; Inc(s.strstart); if (bflush) then {FLUSH_BLOCK(s, FALSE);} begin FLUSH_BLOCK_ONLY(s, FALSE); if (s.strm^.avail_out = 0) then begin deflate_slow := need_more; exit; end; end; end else if (s.match_available) then begin { If there was no match at the previous position, output a single literal. If there was a match but the current match is longer, truncate the previous match to a single literal. } {$IFDEF DEBUG} Tracevv(AnsiChar(s.window^[s.strstart-1])); {$ENDIF} bflush := _tr_tally (s, 0, s.window^[s.strstart-1]); if bflush then begin FLUSH_BLOCK_ONLY(s, FALSE); end; Inc(s.strstart); Dec(s.lookahead); if (s.strm^.avail_out = 0) then begin deflate_slow := need_more; exit; end; end else begin { There is no previous match to compare with, wait for the next step to decide. } s.match_available := TRUE; Inc(s.strstart); Dec(s.lookahead); end; end; {$IFDEF DEBUG} Assert (flush <> Z_NO_FLUSH, 'no flush?'); {$ENDIF} if (s.match_available) then begin {$IFDEF DEBUG} Tracevv(AnsiChar(s.window^[s.strstart-1])); bflush := {$ENDIF} _tr_tally (s, 0, s.window^[s.strstart-1]); s.match_available := FALSE; end; {FLUSH_BLOCK(s, flush = Z_FINISH);} FLUSH_BLOCK_ONLY(s, flush = Z_FINISH); if (s.strm^.avail_out = 0) then begin if flush = Z_FINISH then deflate_slow := finish_started else deflate_slow := need_more; exit; end; if flush = Z_FINISH then deflate_slow := finish_done else deflate_slow := block_done; end; end.