Unit iminfblock; { infblock.h and infblock.c -- interpret and process block types to last block Copyright (C) 1995-1998 Mark Adler Pascal tranlastion Copyright (C) 1998 by Jacques Nomssi Nzali For conditions of distribution and use, see copyright notice in readme.txt } interface {$I imzconf.inc} uses {$IFDEF DEBUG} SysUtils, strutils, {$ENDIF} imzutil, impaszlib; function inflate_blocks_new(var z : z_stream; c : check_func; { check function } w : uInt { window size } ) : pInflate_blocks_state; function inflate_blocks (var s : inflate_blocks_state; var z : z_stream; r : int { initial return code } ) : int; procedure inflate_blocks_reset (var s : inflate_blocks_state; var z : z_stream; c : puLong); { check value on output } function inflate_blocks_free(s : pInflate_blocks_state; var z : z_stream) : int; procedure inflate_set_dictionary(var s : inflate_blocks_state; const d : array of byte; { dictionary } n : uInt); { dictionary length } function inflate_blocks_sync_point(var s : inflate_blocks_state) : int; implementation uses iminfcodes, iminftrees, iminfutil; { Tables for deflate from PKZIP's appnote.txt. } Const border : Array [0..18] Of Word { Order of the bit length code lengths } = (16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15); { Notes beyond the 1.93a appnote.txt: 1. Distance pointers never point before the beginning of the output stream. 2. Distance pointers can point back across blocks, up to 32k away. 3. There is an implied maximum of 7 bits for the bit length table and 15 bits for the actual data. 4. If only one code exists, then it is encoded using one bit. (Zero would be more efficient, but perhaps a little confusing.) If two codes exist, they are coded using one bit each (0 and 1). 5. There is no way of sending zero distance codes--a dummy must be sent if there are none. (History: a pre 2.0 version of PKZIP would store blocks with no distance codes, but this was discovered to be too harsh a criterion.) Valid only for 1.93a. 2.04c does allow zero distance codes, which is sent as one code of zero bits in length. 6. There are up to 286 literal/length codes. Code 256 represents the end-of-block. Note however that the static length tree defines 288 codes just to fill out the Huffman codes. Codes 286 and 287 cannot be used though, since there is no length base or extra bits defined for them. Similarily, there are up to 30 distance codes. However, static trees define 32 codes (all 5 bits) to fill out the Huffman codes, but the last two had better not show up in the data. 7. Unzip can check dynamic Huffman blocks for complete code sets. The exception is that a single code would not be complete (see #4). 8. The five bits following the block type is really the number of literal codes sent minus 257. 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits (1+6+6). Therefore, to output three times the length, you output three codes (1+1+1), whereas to output four times the same length, you only need two codes (1+3). Hmm. 10. In the tree reconstruction algorithm, Code = Code + Increment only if BitLength(i) is not zero. (Pretty obvious.) 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) 12. Note: length code 284 can represent 227-258, but length code 285 really is 258. The last length deserves its own, short code since it gets used a lot in very redundant files. The length 258 is special since 258 - 3 (the min match length) is 255. 13. The literal/length and distance code bit lengths are read as a single stream of lengths. It is possible (and advantageous) for a repeat code (16, 17, or 18) to go across the boundary between the two sets of lengths. } procedure inflate_blocks_reset (var s : inflate_blocks_state; var z : z_stream; c : puLong); { check value on output } begin if (c <> Z_NULL) then c^ := s.check; if (s.mode = BTREE) or (s.mode = DTREE) then ZFREE(z, s.sub.trees.blens); if (s.mode = CODES) then inflate_codes_free(s.sub.decode.codes, z); s.mode := ZTYPE; s.bitk := 0; s.bitb := 0; s.write := s.window; s.read := s.window; if Assigned(s.checkfn) then begin s.check := s.checkfn(uLong(0), pBytef(NIL), 0); z.adler := s.check; end; {$IFDEF DEBUG} Tracev('inflate: blocks reset'); {$ENDIF} end; function inflate_blocks_new(var z : z_stream; c : check_func; { check function } w : uInt { window size } ) : pInflate_blocks_state; var s : pInflate_blocks_state; begin s := pInflate_blocks_state( ZALLOC(z,1, sizeof(inflate_blocks_state)) ); if (s = Z_NULL) then begin inflate_blocks_new := s; exit; end; s^.hufts := huft_ptr( ZALLOC(z, sizeof(inflate_huft), MANY) ); if (s^.hufts = Z_NULL) then begin ZFREE(z, s); inflate_blocks_new := Z_NULL; exit; end; s^.window := pBytef( ZALLOC(z, 1, w) ); if (s^.window = Z_NULL) then begin ZFREE(z, s^.hufts); ZFREE(z, s); inflate_blocks_new := Z_NULL; exit; end; s^.zend := s^.window; Inc(s^.zend, w); s^.checkfn := c; s^.mode := ZTYPE; {$IFDEF DEBUG} Tracev('inflate: blocks allocated'); {$ENDIF} inflate_blocks_reset(s^, z, Z_NULL); inflate_blocks_new := s; end; function inflate_blocks (var s : inflate_blocks_state; var z : z_stream; r : int) : int; { initial return code } label start_btree, start_dtree, start_blkdone, start_dry, start_codes; var t : uInt; { temporary storage } b : uLong; { bit buffer } k : uInt; { bits in bit buffer } p : pBytef; { input data pointer } n : uInt; { bytes available there } q : pBytef; { output window write pointer } m : uInt; { bytes to end of window or read pointer } { fixed code blocks } var bl, bd : uInt; tl, td : pInflate_huft; var h : pInflate_huft; i, j, c : uInt; var cs : pInflate_codes_state; begin { copy input/output information to locals } p := z.next_in; n := z.avail_in; b := s.bitb; k := s.bitk; q := s.write; if ptr2int(q) < ptr2int(s.read) then m := uInt(ptr2int(s.read)-ptr2int(q)-1) else m := uInt(ptr2int(s.zend)-ptr2int(q)); { decompress an inflated block } { process input based on current state } while True do Case s.mode of ZTYPE: begin {NEEDBITS(3);} while (k < 3) do begin {NEEDBYTE;} if (n <> 0) then r :=Z_OK else begin {UPDATE} s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p)-ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; Dec(n); b := b or (uLong(p^) shl k); Inc(p); Inc(k, 8); end; t := uInt(b) and 7; s.last := boolean(t and 1); case (t shr 1) of 0: { stored } begin {$IFDEF DEBUG} if s.last then Tracev('inflate: stored block (last)') else Tracev('inflate: stored block'); {$ENDIF} {DUMPBITS(3);} b := b shr 3; Dec(k, 3); t := k and 7; { go to byte boundary } {DUMPBITS(t);} b := b shr t; Dec(k, t); s.mode := LENS; { get length of stored block } end; 1: { fixed } begin begin {$IFDEF DEBUG} if s.last then Tracev('inflate: fixed codes blocks (last)') else Tracev('inflate: fixed codes blocks'); {$ENDIF} inflate_trees_fixed(bl, bd, tl, td, z); s.sub.decode.codes := inflate_codes_new(bl, bd, tl, td, z); if (s.sub.decode.codes = Z_NULL) then begin r := Z_MEM_ERROR; { update pointers and return } s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p) - ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; end; {DUMPBITS(3);} b := b shr 3; Dec(k, 3); s.mode := CODES; end; 2: { dynamic } begin {$IFDEF DEBUG} if s.last then Tracev('inflate: dynamic codes block (last)') else Tracev('inflate: dynamic codes block'); {$ENDIF} {DUMPBITS(3);} b := b shr 3; Dec(k, 3); s.mode := TABLE; end; 3: begin { illegal } {DUMPBITS(3);} b := b shr 3; Dec(k, 3); s.mode := BLKBAD; z.msg := 'invalid block type'; r := Z_DATA_ERROR; { update pointers and return } s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p) - ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; end; end; LENS: begin {NEEDBITS(32);} while (k < 32) do begin {NEEDBYTE;} if (n <> 0) then r :=Z_OK else begin {UPDATE} s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p)-ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; Dec(n); b := b or (uLong(p^) shl k); Inc(p); Inc(k, 8); end; if (((not b) shr 16) and $ffff) <> (b and $ffff) then begin s.mode := BLKBAD; z.msg := 'invalid stored block lengths'; r := Z_DATA_ERROR; { update pointers and return } s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p) - ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; s.sub.left := uInt(b) and $ffff; k := 0; b := 0; { dump bits } {$IFDEF DEBUG} Tracev('inflate: stored length '+IntToStr(s.sub.left)); {$ENDIF} if s.sub.left <> 0 then s.mode := STORED else if s.last then s.mode := DRY else s.mode := ZTYPE; end; STORED: begin if (n = 0) then begin { update pointers and return } s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p) - ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; {NEEDOUT} if (m = 0) then begin {WRAP} if (q = s.zend) and (s.read <> s.window) then begin q := s.window; if ptr2int(q) < ptr2int(s.read) then m := uInt(ptr2int(s.read)-ptr2int(q)-1) else m := uInt(ptr2int(s.zend)-ptr2int(q)); end; if (m = 0) then begin {FLUSH} s.write := q; r := inflate_flush(s,z,r); q := s.write; if ptr2int(q) < ptr2int(s.read) then m := uInt(ptr2int(s.read)-ptr2int(q)-1) else m := uInt(ptr2int(s.zend)-ptr2int(q)); {WRAP} if (q = s.zend) and (s.read <> s.window) then begin q := s.window; if ptr2int(q) < ptr2int(s.read) then m := uInt(ptr2int(s.read)-ptr2int(q)-1) else m := uInt(ptr2int(s.zend)-ptr2int(q)); end; if (m = 0) then begin {UPDATE} s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p)-ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; end; end; r := Z_OK; t := s.sub.left; if (t > n) then t := n; if (t > m) then t := m; zmemcpy(q, p, t); Inc(p, t); Dec(n, t); Inc(q, t); Dec(m, t); Dec(s.sub.left, t); if (s.sub.left = 0) then begin {$IFDEF DEBUG} if (ptr2int(q) >= ptr2int(s.read)) then Tracev('inflate: stored end '+ IntToStr(z.total_out + ptr2int(q) - ptr2int(s.read)) + ' total out') else Tracev('inflate: stored end '+ IntToStr(z.total_out + ptr2int(s.zend) - ptr2int(s.read) + ptr2int(q) - ptr2int(s.window)) + ' total out'); {$ENDIF} if s.last then s.mode := DRY else s.mode := ZTYPE; end; end; TABLE: begin {NEEDBITS(14);} while (k < 14) do begin {NEEDBYTE;} if (n <> 0) then r :=Z_OK else begin {UPDATE} s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p)-ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; Dec(n); b := b or (uLong(p^) shl k); Inc(p); Inc(k, 8); end; t := uInt(b) and $3fff; s.sub.trees.table := t; {$ifndef PKZIP_BUG_WORKAROUND} if ((t and $1f) > 29) or (((t shr 5) and $1f) > 29) then begin s.mode := BLKBAD; z.msg := 'too many length or distance symbols'; r := Z_DATA_ERROR; { update pointers and return } s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p) - ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; {$endif} t := 258 + (t and $1f) + ((t shr 5) and $1f); s.sub.trees.blens := puIntArray( ZALLOC(z, t, sizeof(uInt)) ); if (s.sub.trees.blens = Z_NULL) then begin r := Z_MEM_ERROR; { update pointers and return } s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p) - ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; {DUMPBITS(14);} b := b shr 14; Dec(k, 14); s.sub.trees.index := 0; {$IFDEF DEBUG} Tracev('inflate: table sizes ok'); {$ENDIF} s.mode := BTREE; { fall trough case is handled by the while } { try GOTO for speed - Nomssi } goto start_btree; end; BTREE: begin start_btree: while (s.sub.trees.index < 4 + (s.sub.trees.table shr 10)) do begin {NEEDBITS(3);} while (k < 3) do begin {NEEDBYTE;} if (n <> 0) then r :=Z_OK else begin {UPDATE} s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p)-ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; Dec(n); b := b or (uLong(p^) shl k); Inc(p); Inc(k, 8); end; s.sub.trees.blens^[border[s.sub.trees.index]] := uInt(b) and 7; Inc(s.sub.trees.index); {DUMPBITS(3);} b := b shr 3; Dec(k, 3); end; while (s.sub.trees.index < 19) do begin s.sub.trees.blens^[border[s.sub.trees.index]] := 0; Inc(s.sub.trees.index); end; s.sub.trees.bb := 7; t := inflate_trees_bits(s.sub.trees.blens^, s.sub.trees.bb, s.sub.trees.tb, s.hufts^, z); if (t <> Z_OK) then begin ZFREE(z, s.sub.trees.blens); r := t; if (r = Z_DATA_ERROR) then s.mode := BLKBAD; { update pointers and return } s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p) - ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; s.sub.trees.index := 0; {$IFDEF DEBUG} Tracev('inflate: bits tree ok'); {$ENDIF} s.mode := DTREE; { fall through again } goto start_dtree; end; DTREE: begin start_dtree: while TRUE do begin t := s.sub.trees.table; if not (s.sub.trees.index < 258 + (t and $1f) + ((t shr 5) and $1f)) then break; t := s.sub.trees.bb; {NEEDBITS(t);} while (k < t) do begin {NEEDBYTE;} if (n <> 0) then r :=Z_OK else begin {UPDATE} s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p)-ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; Dec(n); b := b or (uLong(p^) shl k); Inc(p); Inc(k, 8); end; h := s.sub.trees.tb; Inc(h, uInt(b) and inflate_mask[t]); t := h^.Bits; c := h^.Base; if (c < 16) then begin {DUMPBITS(t);} b := b shr t; Dec(k, t); s.sub.trees.blens^[s.sub.trees.index] := c; Inc(s.sub.trees.index); end else { c = 16..18 } begin if c = 18 then begin i := 7; j := 11; end else begin i := c - 14; j := 3; end; {NEEDBITS(t + i);} while (k < t + i) do begin {NEEDBYTE;} if (n <> 0) then r :=Z_OK else begin {UPDATE} s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p)-ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; Dec(n); b := b or (uLong(p^) shl k); Inc(p); Inc(k, 8); end; {DUMPBITS(t);} b := b shr t; Dec(k, t); Inc(j, uInt(b) and inflate_mask[i]); {DUMPBITS(i);} b := b shr i; Dec(k, i); i := s.sub.trees.index; t := s.sub.trees.table; if (i + j > 258 + (t and $1f) + ((t shr 5) and $1f)) or ((c = 16) and (i < 1)) then begin ZFREE(z, s.sub.trees.blens); s.mode := BLKBAD; z.msg := 'invalid bit length repeat'; r := Z_DATA_ERROR; { update pointers and return } s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p) - ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; if c = 16 then c := s.sub.trees.blens^[i - 1] else c := 0; repeat s.sub.trees.blens^[i] := c; Inc(i); Dec(j); until (j=0); s.sub.trees.index := i; end; end; { while } s.sub.trees.tb := Z_NULL; begin bl := 9; { must be <= 9 for lookahead assumptions } bd := 6; { must be <= 9 for lookahead assumptions } t := s.sub.trees.table; t := inflate_trees_dynamic(257 + (t and $1f), 1 + ((t shr 5) and $1f), s.sub.trees.blens^, bl, bd, tl, td, s.hufts^, z); ZFREE(z, s.sub.trees.blens); if (t <> Z_OK) then begin if (t = uInt(Z_DATA_ERROR)) then s.mode := BLKBAD; r := t; { update pointers and return } s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p) - ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; {$IFDEF DEBUG} Tracev('inflate: trees ok'); {$ENDIF} { c renamed to cs } cs := inflate_codes_new(bl, bd, tl, td, z); if (cs = Z_NULL) then begin r := Z_MEM_ERROR; { update pointers and return } s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p) - ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; s.sub.decode.codes := cs; end; s.mode := CODES; { yet another falltrough } goto start_codes; end; CODES: begin start_codes: { update pointers } s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p) - ptr2int(z.next_in)); z.next_in := p; s.write := q; r := inflate_codes(s, z, r); if (r <> Z_STREAM_END) then begin inflate_blocks := inflate_flush(s, z, r); exit; end; r := Z_OK; inflate_codes_free(s.sub.decode.codes, z); { load local pointers } p := z.next_in; n := z.avail_in; b := s.bitb; k := s.bitk; q := s.write; if ptr2int(q) < ptr2int(s.read) then m := uInt(ptr2int(s.read)-ptr2int(q)-1) else m := uInt(ptr2int(s.zend)-ptr2int(q)); {$IFDEF DEBUG} if (ptr2int(q) >= ptr2int(s.read)) then Tracev('inflate: codes end '+ IntToStr(z.total_out + ptr2int(q) - ptr2int(s.read)) + ' total out') else Tracev('inflate: codes end '+ IntToStr(z.total_out + ptr2int(s.zend) - ptr2int(s.read) + ptr2int(q) - ptr2int(s.window)) + ' total out'); {$ENDIF} if (not s.last) then begin s.mode := ZTYPE; continue; { break for switch statement in C-code } end; {$ifndef patch112} if (k > 7) then { return unused byte, if any } begin {$IFDEF DEBUG} Assert(k < 16, 'inflate_codes grabbed too many bytes'); {$ENDIF} Dec(k, 8); Inc(n); Dec(p); { can always return one } end; {$endif} s.mode := DRY; { another falltrough } goto start_dry; end; DRY: begin start_dry: {FLUSH} s.write := q; r := inflate_flush(s,z,r); q := s.write; { not needed anymore, we are done: if ptr2int(q) < ptr2int(s.read) then m := uInt(ptr2int(s.read)-ptr2int(q)-1) else m := uInt(ptr2int(s.zend)-ptr2int(q)); } if (s.read <> s.write) then begin { update pointers and return } s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p) - ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; s.mode := BLKDONE; goto start_blkdone; end; BLKDONE: begin start_blkdone: r := Z_STREAM_END; { update pointers and return } s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p) - ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; BLKBAD: begin r := Z_DATA_ERROR; { update pointers and return } s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p) - ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; else begin r := Z_STREAM_ERROR; { update pointers and return } s.bitb := b; s.bitk := k; z.avail_in := n; Inc(z.total_in, ptr2int(p) - ptr2int(z.next_in)); z.next_in := p; s.write := q; inflate_blocks := inflate_flush(s,z,r); exit; end; end; { Case s.mode of } end; function inflate_blocks_free(s : pInflate_blocks_state; var z : z_stream) : int; begin inflate_blocks_reset(s^, z, Z_NULL); ZFREE(z, s^.window); ZFREE(z, s^.hufts); ZFREE(z, s); {$IFDEF DEBUG} Trace('inflate: blocks freed'); {$ENDIF} inflate_blocks_free := Z_OK; end; procedure inflate_set_dictionary(var s : inflate_blocks_state; const d : array of byte; { dictionary } n : uInt); { dictionary length } begin zmemcpy(s.window, pBytef(@d), n); s.write := s.window; Inc(s.write, n); s.read := s.write; end; { Returns true if inflate is currently at the end of a block generated by Z_SYNC_FLUSH or Z_FULL_FLUSH. IN assertion: s <> Z_NULL } function inflate_blocks_sync_point(var s : inflate_blocks_state) : int; begin inflate_blocks_sync_point := int(s.mode = LENS); end; end.