unit imjdinput; { Original: jdinput.c ; Copyright (C) 1991-1997, Thomas G. Lane. } { This file is part of the Independent JPEG Group's software. For conditions of distribution and use, see the accompanying README file. This file contains input control logic for the JPEG decompressor. These routines are concerned with controlling the decompressor's input processing (marker reading and coefficient decoding). The actual input reading is done in jdmarker.c, jdhuff.c, and jdphuff.c. } interface {$I imjconfig.inc} uses imjmorecfg, imjpeglib, imjdeferr, imjerror, imjinclude, imjutils; { Initialize the input controller module. This is called only once, when the decompression object is created. } {GLOBAL} procedure jinit_input_controller (cinfo : j_decompress_ptr); implementation { Private state } type my_inputctl_ptr = ^my_input_controller; my_input_controller = record pub : jpeg_input_controller; { public fields } inheaders : boolean; { TRUE until first SOS is reached } end; {my_input_controller;} { Forward declarations } {METHODDEF} function consume_markers (cinfo : j_decompress_ptr) : int; forward; { Routines to calculate various quantities related to the size of the image. } {LOCAL} procedure initial_setup (cinfo : j_decompress_ptr); { Called once, when first SOS marker is reached } var ci : int; compptr : jpeg_component_info_ptr; begin { Make sure image isn't bigger than I can handle } if (long(cinfo^.image_height) > long (JPEG_MAX_DIMENSION)) or (long(cinfo^.image_width) > long(JPEG_MAX_DIMENSION)) then ERREXIT1(j_common_ptr(cinfo), JERR_IMAGE_TOO_BIG, uInt(JPEG_MAX_DIMENSION)); { For now, precision must match compiled-in value... } if (cinfo^.data_precision <> BITS_IN_JSAMPLE) then ERREXIT1(j_common_ptr(cinfo), JERR_BAD_PRECISION, cinfo^.data_precision); { Check that number of components won't exceed internal array sizes } if (cinfo^.num_components > MAX_COMPONENTS) then ERREXIT2(j_common_ptr(cinfo), JERR_COMPONENT_COUNT, cinfo^.num_components, MAX_COMPONENTS); { Compute maximum sampling factors; check factor validity } cinfo^.max_h_samp_factor := 1; cinfo^.max_v_samp_factor := 1; compptr := jpeg_component_info_ptr(cinfo^.comp_info); for ci := 0 to pred(cinfo^.num_components) do begin if (compptr^.h_samp_factor<=0) or (compptr^.h_samp_factor>MAX_SAMP_FACTOR) or (compptr^.v_samp_factor<=0) or (compptr^.v_samp_factor>MAX_SAMP_FACTOR) then ERREXIT(j_common_ptr(cinfo), JERR_BAD_SAMPLING); {cinfo^.max_h_samp_factor := MAX(cinfo^.max_h_samp_factor, compptr^.h_samp_factor); cinfo^.max_v_samp_factor := MAX(cinfo^.max_v_samp_factor, compptr^.v_samp_factor);} if cinfo^.max_h_samp_factor < compptr^.h_samp_factor then cinfo^.max_h_samp_factor := compptr^.h_samp_factor; if cinfo^.max_v_samp_factor < compptr^.v_samp_factor then cinfo^.max_v_samp_factor := compptr^.v_samp_factor; Inc(compptr); end; { We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE. In the full decompressor, this will be overridden by jdmaster.c; but in the transcoder, jdmaster.c is not used, so we must do it here. } cinfo^.min_DCT_scaled_size := DCTSIZE; { Compute dimensions of components } compptr := jpeg_component_info_ptr(cinfo^.comp_info); for ci := 0 to pred(cinfo^.num_components) do begin compptr^.DCT_scaled_size := DCTSIZE; { Size in DCT blocks } compptr^.width_in_blocks := JDIMENSION( jdiv_round_up( long(cinfo^.image_width) * long(compptr^.h_samp_factor), long(cinfo^.max_h_samp_factor * DCTSIZE)) ); compptr^.height_in_blocks := JDIMENSION ( jdiv_round_up(long (cinfo^.image_height) * long(compptr^.v_samp_factor), long (cinfo^.max_v_samp_factor * DCTSIZE)) ); { downsampled_width and downsampled_height will also be overridden by jdmaster.c if we are doing full decompression. The transcoder library doesn't use these values, but the calling application might. } { Size in samples } compptr^.downsampled_width := JDIMENSION ( jdiv_round_up(long (cinfo^.image_width) * long(compptr^.h_samp_factor), long (cinfo^.max_h_samp_factor)) ); compptr^.downsampled_height := JDIMENSION ( jdiv_round_up(long (cinfo^.image_height) * long(compptr^.v_samp_factor), long (cinfo^.max_v_samp_factor)) ); { Mark component needed, until color conversion says otherwise } compptr^.component_needed := TRUE; { Mark no quantization table yet saved for component } compptr^.quant_table := NIL; Inc(compptr); end; { Compute number of fully interleaved MCU rows. } cinfo^.total_iMCU_rows := JDIMENSION( jdiv_round_up(long(cinfo^.image_height), long(cinfo^.max_v_samp_factor*DCTSIZE)) ); { Decide whether file contains multiple scans } if (cinfo^.comps_in_scan < cinfo^.num_components) or (cinfo^.progressive_mode) then cinfo^.inputctl^.has_multiple_scans := TRUE else cinfo^.inputctl^.has_multiple_scans := FALSE; end; {LOCAL} procedure per_scan_setup (cinfo : j_decompress_ptr); { Do computations that are needed before processing a JPEG scan } { cinfo^.comps_in_scan and cinfo^.cur_comp_info[] were set from SOS marker } var ci, mcublks, tmp : int; compptr : jpeg_component_info_ptr; begin if (cinfo^.comps_in_scan = 1) then begin { Noninterleaved (single-component) scan } compptr := cinfo^.cur_comp_info[0]; { Overall image size in MCUs } cinfo^.MCUs_per_row := compptr^.width_in_blocks; cinfo^.MCU_rows_in_scan := compptr^.height_in_blocks; { For noninterleaved scan, always one block per MCU } compptr^.MCU_width := 1; compptr^.MCU_height := 1; compptr^.MCU_blocks := 1; compptr^.MCU_sample_width := compptr^.DCT_scaled_size; compptr^.last_col_width := 1; { For noninterleaved scans, it is convenient to define last_row_height as the number of block rows present in the last iMCU row. } tmp := int (LongInt(compptr^.height_in_blocks) mod compptr^.v_samp_factor); if (tmp = 0) then tmp := compptr^.v_samp_factor; compptr^.last_row_height := tmp; { Prepare array describing MCU composition } cinfo^.blocks_in_MCU := 1; cinfo^.MCU_membership[0] := 0; end else begin { Interleaved (multi-component) scan } if (cinfo^.comps_in_scan <= 0) or (cinfo^.comps_in_scan > MAX_COMPS_IN_SCAN) then ERREXIT2(j_common_ptr(cinfo), JERR_COMPONENT_COUNT, cinfo^.comps_in_scan, MAX_COMPS_IN_SCAN); { Overall image size in MCUs } cinfo^.MCUs_per_row := JDIMENSION ( jdiv_round_up(long (cinfo^.image_width), long (cinfo^.max_h_samp_factor*DCTSIZE)) ); cinfo^.MCU_rows_in_scan := JDIMENSION ( jdiv_round_up(long (cinfo^.image_height), long (cinfo^.max_v_samp_factor*DCTSIZE)) ); cinfo^.blocks_in_MCU := 0; for ci := 0 to pred(cinfo^.comps_in_scan) do begin compptr := cinfo^.cur_comp_info[ci]; { Sampling factors give # of blocks of component in each MCU } compptr^.MCU_width := compptr^.h_samp_factor; compptr^.MCU_height := compptr^.v_samp_factor; compptr^.MCU_blocks := compptr^.MCU_width * compptr^.MCU_height; compptr^.MCU_sample_width := compptr^.MCU_width * compptr^.DCT_scaled_size; { Figure number of non-dummy blocks in last MCU column & row } tmp := int (LongInt(compptr^.width_in_blocks) mod compptr^.MCU_width); if (tmp = 0) then tmp := compptr^.MCU_width; compptr^.last_col_width := tmp; tmp := int (LongInt(compptr^.height_in_blocks) mod compptr^.MCU_height); if (tmp = 0) then tmp := compptr^.MCU_height; compptr^.last_row_height := tmp; { Prepare array describing MCU composition } mcublks := compptr^.MCU_blocks; if (LongInt(cinfo^.blocks_in_MCU) + mcublks > D_MAX_BLOCKS_IN_MCU) then ERREXIT(j_common_ptr(cinfo), JERR_BAD_MCU_SIZE); while (mcublks > 0) do begin Dec(mcublks); cinfo^.MCU_membership[cinfo^.blocks_in_MCU] := ci; Inc(cinfo^.blocks_in_MCU); end; end; end; end; { Save away a copy of the Q-table referenced by each component present in the current scan, unless already saved during a prior scan. In a multiple-scan JPEG file, the encoder could assign different components the same Q-table slot number, but change table definitions between scans so that each component uses a different Q-table. (The IJG encoder is not currently capable of doing this, but other encoders might.) Since we want to be able to dequantize all the components at the end of the file, this means that we have to save away the table actually used for each component. We do this by copying the table at the start of the first scan containing the component. The JPEG spec prohibits the encoder from changing the contents of a Q-table slot between scans of a component using that slot. If the encoder does so anyway, this decoder will simply use the Q-table values that were current at the start of the first scan for the component. The decompressor output side looks only at the saved quant tables, not at the current Q-table slots. } {LOCAL} procedure latch_quant_tables (cinfo : j_decompress_ptr); var ci, qtblno : int; compptr : jpeg_component_info_ptr; qtbl : JQUANT_TBL_PTR; begin for ci := 0 to pred(cinfo^.comps_in_scan) do begin compptr := cinfo^.cur_comp_info[ci]; { No work if we already saved Q-table for this component } if (compptr^.quant_table <> NIL) then continue; { Make sure specified quantization table is present } qtblno := compptr^.quant_tbl_no; if (qtblno < 0) or (qtblno >= NUM_QUANT_TBLS) or (cinfo^.quant_tbl_ptrs[qtblno] = NIL) then ERREXIT1(j_common_ptr(cinfo), JERR_NO_QUANT_TABLE, qtblno); { OK, save away the quantization table } qtbl := JQUANT_TBL_PTR( cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE, SIZEOF(JQUANT_TBL)) ); MEMCOPY(qtbl, cinfo^.quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL)); compptr^.quant_table := qtbl; end; end; { Initialize the input modules to read a scan of compressed data. The first call to this is done by jdmaster.c after initializing the entire decompressor (during jpeg_start_decompress). Subsequent calls come from consume_markers, below. } {METHODDEF} procedure start_input_pass (cinfo : j_decompress_ptr); begin per_scan_setup(cinfo); latch_quant_tables(cinfo); cinfo^.entropy^.start_pass (cinfo); cinfo^.coef^.start_input_pass (cinfo); cinfo^.inputctl^.consume_input := cinfo^.coef^.consume_data; end; { Finish up after inputting a compressed-data scan. This is called by the coefficient controller after it's read all the expected data of the scan. } {METHODDEF} procedure finish_input_pass (cinfo : j_decompress_ptr); begin cinfo^.inputctl^.consume_input := consume_markers; end; { Read JPEG markers before, between, or after compressed-data scans. Change state as necessary when a new scan is reached. Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. The consume_input method pointer points either here or to the coefficient controller's consume_data routine, depending on whether we are reading a compressed data segment or inter-segment markers. } {METHODDEF} function consume_markers (cinfo : j_decompress_ptr) : int; var val : int; inputctl : my_inputctl_ptr; begin inputctl := my_inputctl_ptr (cinfo^.inputctl); if (inputctl^.pub.eoi_reached) then { After hitting EOI, read no further } begin consume_markers := JPEG_REACHED_EOI; exit; end; val := cinfo^.marker^.read_markers (cinfo); case (val) of JPEG_REACHED_SOS: { Found SOS } begin if (inputctl^.inheaders) then begin { 1st SOS } initial_setup(cinfo); inputctl^.inheaders := FALSE; { Note: start_input_pass must be called by jdmaster.c before any more input can be consumed. jdapimin.c is responsible for enforcing this sequencing. } end else begin { 2nd or later SOS marker } if (not inputctl^.pub.has_multiple_scans) then ERREXIT(j_common_ptr(cinfo), JERR_EOI_EXPECTED); { Oops, I wasn't expecting this! } start_input_pass(cinfo); end; end; JPEG_REACHED_EOI: { Found EOI } begin inputctl^.pub.eoi_reached := TRUE; if (inputctl^.inheaders) then begin { Tables-only datastream, apparently } if (cinfo^.marker^.saw_SOF) then ERREXIT(j_common_ptr(cinfo), JERR_SOF_NO_SOS); end else begin { Prevent infinite loop in coef ctlr's decompress_data routine if user set output_scan_number larger than number of scans. } if (cinfo^.output_scan_number > cinfo^.input_scan_number) then cinfo^.output_scan_number := cinfo^.input_scan_number; end; end; JPEG_SUSPENDED:; end; consume_markers := val; end; { Reset state to begin a fresh datastream. } {METHODDEF} procedure reset_input_controller (cinfo : j_decompress_ptr); var inputctl : my_inputctl_ptr; begin inputctl := my_inputctl_ptr (cinfo^.inputctl); inputctl^.pub.consume_input := consume_markers; inputctl^.pub.has_multiple_scans := FALSE; { "unknown" would be better } inputctl^.pub.eoi_reached := FALSE; inputctl^.inheaders := TRUE; { Reset other modules } cinfo^.err^.reset_error_mgr (j_common_ptr(cinfo)); cinfo^.marker^.reset_marker_reader (cinfo); { Reset progression state -- would be cleaner if entropy decoder did this } cinfo^.coef_bits := NIL; end; { Initialize the input controller module. This is called only once, when the decompression object is created. } {GLOBAL} procedure jinit_input_controller (cinfo : j_decompress_ptr); var inputctl : my_inputctl_ptr; begin { Create subobject in permanent pool } inputctl := my_inputctl_ptr( cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_PERMANENT, SIZEOF(my_input_controller)) ); cinfo^.inputctl := jpeg_input_controller_ptr(inputctl); { Initialize method pointers } inputctl^.pub.consume_input := consume_markers; inputctl^.pub.reset_input_controller := reset_input_controller; inputctl^.pub.start_input_pass := start_input_pass; inputctl^.pub.finish_input_pass := finish_input_pass; { Initialize state: can't use reset_input_controller since we don't want to try to reset other modules yet. } inputctl^.pub.has_multiple_scans := FALSE; { "unknown" would be better } inputctl^.pub.eoi_reached := FALSE; inputctl^.inheaders := TRUE; end; end.