unit imjcphuff; { This file contains Huffman entropy encoding routines for progressive JPEG. We do not support output suspension in this module, since the library currently does not allow multiple-scan files to be written with output suspension. } { Original: jcphuff.c; Copyright (C) 1995-1997, Thomas G. Lane. } interface {$I imjconfig.inc} uses imjmorecfg, imjinclude, imjpeglib, imjdeferr, imjerror, imjutils, imjcomapi, imjchuff; { Declarations shared with jchuff.c } { Module initialization routine for progressive Huffman entropy encoding. } {GLOBAL} procedure jinit_phuff_encoder (cinfo : j_compress_ptr); implementation { Expanded entropy encoder object for progressive Huffman encoding. } type phuff_entropy_ptr = ^phuff_entropy_encoder; phuff_entropy_encoder = record pub : jpeg_entropy_encoder; { public fields } { Mode flag: TRUE for optimization, FALSE for actual data output } gather_statistics : boolean; { Bit-level coding status. next_output_byte/free_in_buffer are local copies of cinfo^.dest fields.} next_output_byte : JOCTETptr; { => next byte to write in buffer } free_in_buffer : size_t; { # of byte spaces remaining in buffer } put_buffer : INT32; { current bit-accumulation buffer } put_bits : int; { # of bits now in it } cinfo : j_compress_ptr; { link to cinfo (needed for dump_buffer) } { Coding status for DC components } last_dc_val : array[0..MAX_COMPS_IN_SCAN-1] of int; { last DC coef for each component } { Coding status for AC components } ac_tbl_no : int; { the table number of the single component } EOBRUN : uInt; { run length of EOBs } BE : uInt; { # of buffered correction bits before MCU } bit_buffer : JBytePtr; { buffer for correction bits (1 per char) } { packing correction bits tightly would save some space but cost time... } restarts_to_go : uInt; { MCUs left in this restart interval } next_restart_num : int; { next restart number to write (0-7) } { Pointers to derived tables (these workspaces have image lifespan). Since any one scan codes only DC or only AC, we only need one set of tables, not one for DC and one for AC. } derived_tbls : array[0..NUM_HUFF_TBLS-1] of c_derived_tbl_ptr; { Statistics tables for optimization; again, one set is enough } count_ptrs : array[0..NUM_HUFF_TBLS-1] of TLongTablePtr; end; { MAX_CORR_BITS is the number of bits the AC refinement correction-bit buffer can hold. Larger sizes may slightly improve compression, but 1000 is already well into the realm of overkill. The minimum safe size is 64 bits. } const MAX_CORR_BITS = 1000; { Max # of correction bits I can buffer } { Forward declarations } {METHODDEF} function encode_mcu_DC_first (cinfo : j_compress_ptr; const MCU_data: array of JBLOCKROW) : boolean; forward; {METHODDEF} function encode_mcu_AC_first (cinfo : j_compress_ptr; const MCU_data: array of JBLOCKROW) : boolean; forward; {METHODDEF} function encode_mcu_DC_refine (cinfo : j_compress_ptr; const MCU_data: array of JBLOCKROW) : boolean; forward; {METHODDEF} function encode_mcu_AC_refine (cinfo : j_compress_ptr; const MCU_data: array of JBLOCKROW) : boolean; forward; {METHODDEF} procedure finish_pass_phuff (cinfo : j_compress_ptr); forward; {METHODDEF} procedure finish_pass_gather_phuff (cinfo : j_compress_ptr); forward; { Initialize for a Huffman-compressed scan using progressive JPEG. } {METHODDEF} procedure start_pass_phuff (cinfo : j_compress_ptr; gather_statistics : boolean); var entropy : phuff_entropy_ptr; is_DC_band : boolean; ci, tbl : int; compptr : jpeg_component_info_ptr; begin tbl := 0; entropy := phuff_entropy_ptr (cinfo^.entropy); entropy^.cinfo := cinfo; entropy^.gather_statistics := gather_statistics; is_DC_band := (cinfo^.Ss = 0); { We assume jcmaster.c already validated the scan parameters. } { Select execution routines } if (cinfo^.Ah = 0) then begin if (is_DC_band) then entropy^.pub.encode_mcu := encode_mcu_DC_first else entropy^.pub.encode_mcu := encode_mcu_AC_first; end else begin if (is_DC_band) then entropy^.pub.encode_mcu := encode_mcu_DC_refine else begin entropy^.pub.encode_mcu := encode_mcu_AC_refine; { AC refinement needs a correction bit buffer } if (entropy^.bit_buffer = NIL) then entropy^.bit_buffer := JBytePtr( cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE, MAX_CORR_BITS * SIZEOF(byte)) ); end; end; if (gather_statistics) then entropy^.pub.finish_pass := finish_pass_gather_phuff else entropy^.pub.finish_pass := finish_pass_phuff; { Only DC coefficients may be interleaved, so cinfo^.comps_in_scan = 1 for AC coefficients. } for ci := 0 to pred(cinfo^.comps_in_scan) do begin compptr := cinfo^.cur_comp_info[ci]; { Initialize DC predictions to 0 } entropy^.last_dc_val[ci] := 0; { Get table index } if (is_DC_band) then begin if (cinfo^.Ah <> 0) then { DC refinement needs no table } continue; tbl := compptr^.dc_tbl_no; end else begin tbl := compptr^.ac_tbl_no; entropy^.ac_tbl_no := tbl; end; if (gather_statistics) then begin { Check for invalid table index } { (make_c_derived_tbl does this in the other path) } if (tbl < 0) or (tbl >= NUM_HUFF_TBLS) then ERREXIT1(j_common_ptr(cinfo), JERR_NO_HUFF_TABLE, tbl); { Allocate and zero the statistics tables } { Note that jpeg_gen_optimal_table expects 257 entries in each table! } if (entropy^.count_ptrs[tbl] = NIL) then entropy^.count_ptrs[tbl] := TLongTablePtr( cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE, 257 * SIZEOF(long)) ); MEMZERO(entropy^.count_ptrs[tbl], 257 * SIZEOF(long)); end else begin { Compute derived values for Huffman table } { We may do this more than once for a table, but it's not expensive } jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl, entropy^.derived_tbls[tbl]); end; end; { Initialize AC stuff } entropy^.EOBRUN := 0; entropy^.BE := 0; { Initialize bit buffer to empty } entropy^.put_buffer := 0; entropy^.put_bits := 0; { Initialize restart stuff } entropy^.restarts_to_go := cinfo^.restart_interval; entropy^.next_restart_num := 0; end; {LOCAL} procedure dump_buffer (entropy : phuff_entropy_ptr); { Empty the output buffer; we do not support suspension in this module. } var dest : jpeg_destination_mgr_ptr; begin dest := entropy^.cinfo^.dest; if (not dest^.empty_output_buffer (entropy^.cinfo)) then ERREXIT(j_common_ptr(entropy^.cinfo), JERR_CANT_SUSPEND); { After a successful buffer dump, must reset buffer pointers } entropy^.next_output_byte := dest^.next_output_byte; entropy^.free_in_buffer := dest^.free_in_buffer; end; { Outputting bits to the file } { Only the right 24 bits of put_buffer are used; the valid bits are left-justified in this part. At most 16 bits can be passed to emit_bits in one call, and we never retain more than 7 bits in put_buffer between calls, so 24 bits are sufficient. } {LOCAL} procedure emit_bits (entropy : phuff_entropy_ptr; code : uInt; size : int); {INLINE} { Emit some bits, unless we are in gather mode } var {register} put_buffer : INT32; {register} put_bits : int; var c : int; begin { This routine is heavily used, so it's worth coding tightly. } put_buffer := INT32 (code); put_bits := entropy^.put_bits; { if size is 0, caller used an invalid Huffman table entry } if (size = 0) then ERREXIT(j_common_ptr(entropy^.cinfo), JERR_HUFF_MISSING_CODE); if (entropy^.gather_statistics) then exit; { do nothing if we're only getting stats } put_buffer := put_buffer and ((INT32(1) shl size) - 1); { mask off any extra bits in code } Inc(put_bits, size); { new number of bits in buffer } put_buffer := put_buffer shl (24 - put_bits); { align incoming bits } put_buffer := put_buffer or entropy^.put_buffer; { and merge with old buffer contents } while (put_bits >= 8) do begin c := int ((put_buffer shr 16) and $FF); {emit_byte(entropy, c);} { Outputting bytes to the file. NB: these must be called only when actually outputting, that is, entropy^.gather_statistics = FALSE. } { Emit a byte } entropy^.next_output_byte^ := JOCTET(c); Inc(entropy^.next_output_byte); Dec(entropy^.free_in_buffer); if (entropy^.free_in_buffer = 0) then dump_buffer(entropy); if (c = $FF) then begin { need to stuff a zero byte? } {emit_byte(entropy, 0);} entropy^.next_output_byte^ := JOCTET(0); Inc(entropy^.next_output_byte); Dec(entropy^.free_in_buffer); if (entropy^.free_in_buffer = 0) then dump_buffer(entropy); end; put_buffer := put_buffer shl 8; Dec(put_bits, 8); end; entropy^.put_buffer := put_buffer; { update variables } entropy^.put_bits := put_bits; end; {LOCAL} procedure flush_bits (entropy : phuff_entropy_ptr); begin emit_bits(entropy, $7F, 7); { fill any partial byte with ones } entropy^.put_buffer := 0; { and reset bit-buffer to empty } entropy^.put_bits := 0; end; { Emit (or just count) a Huffman symbol. } {LOCAL} procedure emit_symbol (entropy : phuff_entropy_ptr; tbl_no : int; symbol : int); {INLINE} var tbl : c_derived_tbl_ptr; begin if (entropy^.gather_statistics) then Inc(entropy^.count_ptrs[tbl_no]^[symbol]) else begin tbl := entropy^.derived_tbls[tbl_no]; emit_bits(entropy, tbl^.ehufco[symbol], tbl^.ehufsi[symbol]); end; end; { Emit bits from a correction bit buffer. } {LOCAL} procedure emit_buffered_bits (entropy : phuff_entropy_ptr; bufstart : JBytePtr; nbits : uInt); var bufptr : byteptr; begin if (entropy^.gather_statistics) then exit; { no real work } bufptr := byteptr(bufstart); while (nbits > 0) do begin emit_bits(entropy, uInt(bufptr^), 1); Inc(bufptr); Dec(nbits); end; end; { Emit any pending EOBRUN symbol. } {LOCAL} procedure emit_eobrun (entropy : phuff_entropy_ptr); var {register} temp, nbits : int; begin if (entropy^.EOBRUN > 0) then begin { if there is any pending EOBRUN } temp := entropy^.EOBRUN; nbits := 0; temp := temp shr 1; while (temp <> 0) do begin Inc(nbits); temp := temp shr 1; end; { safety check: shouldn't happen given limited correction-bit buffer } if (nbits > 14) then ERREXIT(j_common_ptr(entropy^.cinfo), JERR_HUFF_MISSING_CODE); emit_symbol(entropy, entropy^.ac_tbl_no, nbits shl 4); if (nbits <> 0) then emit_bits(entropy, entropy^.EOBRUN, nbits); entropy^.EOBRUN := 0; { Emit any buffered correction bits } emit_buffered_bits(entropy, entropy^.bit_buffer, entropy^.BE); entropy^.BE := 0; end; end; { Emit a restart marker & resynchronize predictions. } {LOCAL} procedure emit_restart (entropy : phuff_entropy_ptr; restart_num : int); var ci : int; begin emit_eobrun(entropy); if (not entropy^.gather_statistics) then begin flush_bits(entropy); {emit_byte(entropy, $FF);} { Outputting bytes to the file. NB: these must be called only when actually outputting, that is, entropy^.gather_statistics = FALSE. } entropy^.next_output_byte^ := JOCTET($FF); Inc(entropy^.next_output_byte); Dec(entropy^.free_in_buffer); if (entropy^.free_in_buffer = 0) then dump_buffer(entropy); {emit_byte(entropy, JPEG_RST0 + restart_num);} entropy^.next_output_byte^ := JOCTET(JPEG_RST0 + restart_num); Inc(entropy^.next_output_byte); Dec(entropy^.free_in_buffer); if (entropy^.free_in_buffer = 0) then dump_buffer(entropy); end; if (entropy^.cinfo^.Ss = 0) then begin { Re-initialize DC predictions to 0 } for ci := 0 to pred(entropy^.cinfo^.comps_in_scan) do entropy^.last_dc_val[ci] := 0; end else begin { Re-initialize all AC-related fields to 0 } entropy^.EOBRUN := 0; entropy^.BE := 0; end; end; { MCU encoding for DC initial scan (either spectral selection, or first pass of successive approximation). } {METHODDEF} function encode_mcu_DC_first (cinfo : j_compress_ptr; const MCU_data: array of JBLOCKROW) : boolean; var entropy : phuff_entropy_ptr; {register} temp, temp2 : int; {register} nbits : int; blkn, ci : int; Al : int; block : JBLOCK_PTR; compptr : jpeg_component_info_ptr; ishift_temp : int; begin entropy := phuff_entropy_ptr (cinfo^.entropy); Al := cinfo^.Al; entropy^.next_output_byte := cinfo^.dest^.next_output_byte; entropy^.free_in_buffer := cinfo^.dest^.free_in_buffer; { Emit restart marker if needed } if (cinfo^.restart_interval <> 0) then if (entropy^.restarts_to_go = 0) then emit_restart(entropy, entropy^.next_restart_num); { Encode the MCU data blocks } for blkn := 0 to pred(cinfo^.blocks_in_MCU) do begin block := JBLOCK_PTR(MCU_data[blkn]); ci := cinfo^.MCU_membership[blkn]; compptr := cinfo^.cur_comp_info[ci]; { Compute the DC value after the required point transform by Al. This is simply an arithmetic right shift. } {temp2 := IRIGHT_SHIFT( int(block^[0]), Al);} {IRIGHT_SHIFT_IS_UNSIGNED} ishift_temp := int(block^[0]); if ishift_temp < 0 then temp2 := (ishift_temp shr Al) or ((not 0) shl (16-Al)) else temp2 := ishift_temp shr Al; { DC differences are figured on the point-transformed values. } temp := temp2 - entropy^.last_dc_val[ci]; entropy^.last_dc_val[ci] := temp2; { Encode the DC coefficient difference per section G.1.2.1 } temp2 := temp; if (temp < 0) then begin temp := -temp; { temp is abs value of input } { For a negative input, want temp2 := bitwise complement of abs(input) } { This code assumes we are on a two's complement machine } Dec(temp2); end; { Find the number of bits needed for the magnitude of the coefficient } nbits := 0; while (temp <> 0) do begin Inc(nbits); temp := temp shr 1; end; { Check for out-of-range coefficient values. Since we're encoding a difference, the range limit is twice as much. } if (nbits > MAX_COEF_BITS+1) then ERREXIT(j_common_ptr(cinfo), JERR_BAD_DCT_COEF); { Count/emit the Huffman-coded symbol for the number of bits } emit_symbol(entropy, compptr^.dc_tbl_no, nbits); { Emit that number of bits of the value, if positive, } { or the complement of its magnitude, if negative. } if (nbits <> 0) then { emit_bits rejects calls with size 0 } emit_bits(entropy, uInt(temp2), nbits); end; cinfo^.dest^.next_output_byte := entropy^.next_output_byte; cinfo^.dest^.free_in_buffer := entropy^.free_in_buffer; { Update restart-interval state too } if (cinfo^.restart_interval <> 0) then begin if (entropy^.restarts_to_go = 0) then begin entropy^.restarts_to_go := cinfo^.restart_interval; Inc(entropy^.next_restart_num); with entropy^ do next_restart_num := next_restart_num and 7; end; Dec(entropy^.restarts_to_go); end; encode_mcu_DC_first := TRUE; end; { MCU encoding for AC initial scan (either spectral selection, or first pass of successive approximation). } {METHODDEF} function encode_mcu_AC_first (cinfo : j_compress_ptr; const MCU_data: array of JBLOCKROW) : boolean; var entropy : phuff_entropy_ptr; {register} temp, temp2 : int; {register} nbits : int; {register} r, k : int; Se : int; Al : int; block : JBLOCK_PTR; begin entropy := phuff_entropy_ptr (cinfo^.entropy); Se := cinfo^.Se; Al := cinfo^.Al; entropy^.next_output_byte := cinfo^.dest^.next_output_byte; entropy^.free_in_buffer := cinfo^.dest^.free_in_buffer; { Emit restart marker if needed } if (cinfo^.restart_interval <> 0) then if (entropy^.restarts_to_go = 0) then emit_restart(entropy, entropy^.next_restart_num); { Encode the MCU data block } block := JBLOCK_PTR(MCU_data[0]); { Encode the AC coefficients per section G.1.2.2, fig. G.3 } r := 0; { r := run length of zeros } for k := cinfo^.Ss to Se do begin temp := (block^[jpeg_natural_order[k]]); if (temp = 0) then begin Inc(r); continue; end; { We must apply the point transform by Al. For AC coefficients this is an integer division with rounding towards 0. To do this portably in C, we shift after obtaining the absolute value; so the code is interwoven with finding the abs value (temp) and output bits (temp2). } if (temp < 0) then begin temp := -temp; { temp is abs value of input } temp := temp shr Al; { apply the point transform } { For a negative coef, want temp2 := bitwise complement of abs(coef) } temp2 := not temp; end else begin temp := temp shr Al; { apply the point transform } temp2 := temp; end; { Watch out for case that nonzero coef is zero after point transform } if (temp = 0) then begin Inc(r); continue; end; { Emit any pending EOBRUN } if (entropy^.EOBRUN > 0) then emit_eobrun(entropy); { if run length > 15, must emit special run-length-16 codes ($F0) } while (r > 15) do begin emit_symbol(entropy, entropy^.ac_tbl_no, $F0); Dec(r, 16); end; { Find the number of bits needed for the magnitude of the coefficient } nbits := 0; { there must be at least one 1 bit } repeat Inc(nbits); temp := temp shr 1; until (temp = 0); { Check for out-of-range coefficient values } if (nbits > MAX_COEF_BITS) then ERREXIT(j_common_ptr(cinfo), JERR_BAD_DCT_COEF); { Count/emit Huffman symbol for run length / number of bits } emit_symbol(entropy, entropy^.ac_tbl_no, (r shl 4) + nbits); { Emit that number of bits of the value, if positive, } { or the complement of its magnitude, if negative. } emit_bits(entropy, uInt(temp2), nbits); r := 0; { reset zero run length } end; if (r > 0) then begin { If there are trailing zeroes, } Inc(entropy^.EOBRUN); { count an EOB } if (entropy^.EOBRUN = $7FFF) then emit_eobrun(entropy); { force it out to avoid overflow } end; cinfo^.dest^.next_output_byte := entropy^.next_output_byte; cinfo^.dest^.free_in_buffer := entropy^.free_in_buffer; { Update restart-interval state too } if (cinfo^.restart_interval <> 0) then begin if (entropy^.restarts_to_go = 0) then begin entropy^.restarts_to_go := cinfo^.restart_interval; Inc(entropy^.next_restart_num); with entropy^ do next_restart_num := next_restart_num and 7; end; Dec(entropy^.restarts_to_go); end; encode_mcu_AC_first := TRUE; end; { MCU encoding for DC successive approximation refinement scan. Note: we assume such scans can be multi-component, although the spec is not very clear on the point. } {METHODDEF} function encode_mcu_DC_refine (cinfo : j_compress_ptr; const MCU_data: array of JBLOCKROW) : boolean; var entropy : phuff_entropy_ptr; {register} temp : int; blkn : int; Al : int; block : JBLOCK_PTR; begin entropy := phuff_entropy_ptr (cinfo^.entropy); Al := cinfo^.Al; entropy^.next_output_byte := cinfo^.dest^.next_output_byte; entropy^.free_in_buffer := cinfo^.dest^.free_in_buffer; { Emit restart marker if needed } if (cinfo^.restart_interval <> 0) then if (entropy^.restarts_to_go = 0) then emit_restart(entropy, entropy^.next_restart_num); { Encode the MCU data blocks } for blkn := 0 to pred(cinfo^.blocks_in_MCU) do begin block := JBLOCK_PTR(MCU_data[blkn]); { We simply emit the Al'th bit of the DC coefficient value. } temp := block^[0]; emit_bits(entropy, uInt(temp shr Al), 1); end; cinfo^.dest^.next_output_byte := entropy^.next_output_byte; cinfo^.dest^.free_in_buffer := entropy^.free_in_buffer; { Update restart-interval state too } if (cinfo^.restart_interval <> 0) then begin if (entropy^.restarts_to_go = 0) then begin entropy^.restarts_to_go := cinfo^.restart_interval; Inc(entropy^.next_restart_num); with entropy^ do next_restart_num := next_restart_num and 7; end; Dec(entropy^.restarts_to_go); end; encode_mcu_DC_refine := TRUE; end; { MCU encoding for AC successive approximation refinement scan. } {METHODDEF} function encode_mcu_AC_refine (cinfo : j_compress_ptr; const MCU_data: array of JBLOCKROW) : boolean; var entropy : phuff_entropy_ptr; {register} temp : int; {register} r, k : int; EOB : int; BR_buffer : JBytePtr; BR : uInt; Se : int; Al : int; block : JBLOCK_PTR; absvalues : array[0..DCTSIZE2-1] of int; begin entropy := phuff_entropy_ptr(cinfo^.entropy); Se := cinfo^.Se; Al := cinfo^.Al; entropy^.next_output_byte := cinfo^.dest^.next_output_byte; entropy^.free_in_buffer := cinfo^.dest^.free_in_buffer; { Emit restart marker if needed } if (cinfo^.restart_interval <> 0) then if (entropy^.restarts_to_go = 0) then emit_restart(entropy, entropy^.next_restart_num); { Encode the MCU data block } block := JBLOCK_PTR(MCU_data[0]); { It is convenient to make a pre-pass to determine the transformed coefficients' absolute values and the EOB position. } EOB := 0; for k := cinfo^.Ss to Se do begin temp := block^[jpeg_natural_order[k]]; { We must apply the point transform by Al. For AC coefficients this is an integer division with rounding towards 0. To do this portably in C, we shift after obtaining the absolute value. } if (temp < 0) then temp := -temp; { temp is abs value of input } temp := temp shr Al; { apply the point transform } absvalues[k] := temp; { save abs value for main pass } if (temp = 1) then EOB := k; { EOB := index of last newly-nonzero coef } end; { Encode the AC coefficients per section G.1.2.3, fig. G.7 } r := 0; { r := run length of zeros } BR := 0; { BR := count of buffered bits added now } BR_buffer := JBytePtr(@(entropy^.bit_buffer^[entropy^.BE])); { Append bits to buffer } for k := cinfo^.Ss to Se do begin temp := absvalues[k]; if (temp = 0) then begin Inc(r); continue; end; { Emit any required ZRLs, but not if they can be folded into EOB } while (r > 15) and (k <= EOB) do begin { emit any pending EOBRUN and the BE correction bits } emit_eobrun(entropy); { Emit ZRL } emit_symbol(entropy, entropy^.ac_tbl_no, $F0); Dec(r, 16); { Emit buffered correction bits that must be associated with ZRL } emit_buffered_bits(entropy, BR_buffer, BR); BR_buffer := entropy^.bit_buffer; { BE bits are gone now } BR := 0; end; { If the coef was previously nonzero, it only needs a correction bit. NOTE: a straight translation of the spec's figure G.7 would suggest that we also need to test r > 15. But if r > 15, we can only get here if k > EOB, which implies that this coefficient is not 1. } if (temp > 1) then begin { The correction bit is the next bit of the absolute value. } BR_buffer^[BR] := byte (temp and 1); Inc(BR); continue; end; { Emit any pending EOBRUN and the BE correction bits } emit_eobrun(entropy); { Count/emit Huffman symbol for run length / number of bits } emit_symbol(entropy, entropy^.ac_tbl_no, (r shl 4) + 1); { Emit output bit for newly-nonzero coef } if (block^[jpeg_natural_order[k]] < 0) then temp := 0 else temp := 1; emit_bits(entropy, uInt(temp), 1); { Emit buffered correction bits that must be associated with this code } emit_buffered_bits(entropy, BR_buffer, BR); BR_buffer := entropy^.bit_buffer; { BE bits are gone now } BR := 0; r := 0; { reset zero run length } end; if (r > 0) or (BR > 0) then begin { If there are trailing zeroes, } Inc(entropy^.EOBRUN); { count an EOB } Inc(entropy^.BE, BR); { concat my correction bits to older ones } { We force out the EOB if we risk either: 1. overflow of the EOB counter; 2. overflow of the correction bit buffer during the next MCU. } if (entropy^.EOBRUN = $7FFF) or (entropy^.BE > (MAX_CORR_BITS-DCTSIZE2+1)) then emit_eobrun(entropy); end; cinfo^.dest^.next_output_byte := entropy^.next_output_byte; cinfo^.dest^.free_in_buffer := entropy^.free_in_buffer; { Update restart-interval state too } if (cinfo^.restart_interval <> 0) then begin if (entropy^.restarts_to_go = 0) then begin entropy^.restarts_to_go := cinfo^.restart_interval; Inc(entropy^.next_restart_num); with entropy^ do next_restart_num := next_restart_num and 7; end; Dec(entropy^.restarts_to_go); end; encode_mcu_AC_refine := TRUE; end; { Finish up at the end of a Huffman-compressed progressive scan. } {METHODDEF} procedure finish_pass_phuff (cinfo : j_compress_ptr); var entropy : phuff_entropy_ptr; begin entropy := phuff_entropy_ptr (cinfo^.entropy); entropy^.next_output_byte := cinfo^.dest^.next_output_byte; entropy^.free_in_buffer := cinfo^.dest^.free_in_buffer; { Flush out any buffered data } emit_eobrun(entropy); flush_bits(entropy); cinfo^.dest^.next_output_byte := entropy^.next_output_byte; cinfo^.dest^.free_in_buffer := entropy^.free_in_buffer; end; { Finish up a statistics-gathering pass and create the new Huffman tables. } {METHODDEF} procedure finish_pass_gather_phuff (cinfo : j_compress_ptr); var entropy : phuff_entropy_ptr; is_DC_band : boolean; ci, tbl : int; compptr : jpeg_component_info_ptr; htblptr : ^JHUFF_TBL_PTR; did : array[0..NUM_HUFF_TBLS-1] of boolean; begin tbl := 0; entropy := phuff_entropy_ptr (cinfo^.entropy); { Flush out buffered data (all we care about is counting the EOB symbol) } emit_eobrun(entropy); is_DC_band := (cinfo^.Ss = 0); { It's important not to apply jpeg_gen_optimal_table more than once per table, because it clobbers the input frequency counts! } MEMZERO(@did, SIZEOF(did)); for ci := 0 to pred(cinfo^.comps_in_scan) do begin compptr := cinfo^.cur_comp_info[ci]; if (is_DC_band) then begin if (cinfo^.Ah <> 0) then { DC refinement needs no table } continue; tbl := compptr^.dc_tbl_no; end else begin tbl := compptr^.ac_tbl_no; end; if (not did[tbl]) then begin if (is_DC_band) then htblptr := @(cinfo^.dc_huff_tbl_ptrs[tbl]) else htblptr := @(cinfo^.ac_huff_tbl_ptrs[tbl]); if (htblptr^ = NIL) then htblptr^ := jpeg_alloc_huff_table(j_common_ptr(cinfo)); jpeg_gen_optimal_table(cinfo, htblptr^, entropy^.count_ptrs[tbl]^); did[tbl] := TRUE; end; end; end; { Module initialization routine for progressive Huffman entropy encoding. } {GLOBAL} procedure jinit_phuff_encoder (cinfo : j_compress_ptr); var entropy : phuff_entropy_ptr; i : int; begin entropy := phuff_entropy_ptr( cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE, SIZEOF(phuff_entropy_encoder)) ); cinfo^.entropy := jpeg_entropy_encoder_ptr(entropy); entropy^.pub.start_pass := start_pass_phuff; { Mark tables unallocated } for i := 0 to pred(NUM_HUFF_TBLS) do begin entropy^.derived_tbls[i] := NIL; entropy^.count_ptrs[i] := NIL; end; entropy^.bit_buffer := NIL; { needed only in AC refinement scan } end; end.